
http://www.cambridge.org/9780521864350

This page intentionally left blank

DYNAMIC MODELING AND CONTROL OF ENGINEERING SYSTEMS

THIRD EDITION

This textbook is ideal for a course in Engineering System Dynamics and Controls.

The work is a comprehensive treatment of the analysis of lumped-parameter

physical systems. Starting with a discussion of mathematical models in general,

and ordinary differential equations, the book covers input–output and state-

space models, computer simulation, and modeling methods and techniques in

mechanical, electrical, thermal, and fluid domains. Frequency-domain methods,

transfer functions, and frequency response are covered in detail. The book con-

cludes with a treatment of stability, feedback control (PID, lag–lead, root locus),

and an introduction to discrete-time systems. This new edition features many

new and expanded sections on such topics as Solving Stiff Systems, Opera-

tional Amplifiers, Electrohydraulic Servovalves, Using MATLAB® with Trans-

fer Functions, Using MATLAB with Frequency Response, MATLAB Tutorial,

and an expanded Simulink® Tutorial. The work has 40 percent more end-of-

chapter exercises and 30 percent more examples.

Bohdan T. Kulakowski, Ph.D. (1942–2006) was Professor of Mechanical Engi-

neering at Pennsylvania State University. He was an internationally recognized

expert in automatic control systems, computer simulations and control of indus-

trial processes, systems dynamics, vehicle–road dynamic interaction, and trans-

portation systems. His fuzzy-logic algorithm for avoiding skidding accidents was

recognized in 2000 by Discover magazine as one of its top 10 technological inno-

vations of the year.

John F. Gardner is Chair of the Mechanical and Biomedical Engineering Depart-

ment at Boise State University, where he has been a faculty member since 2000.

Before his appointment at Boise State, he was on the faculty of Pennsylvania

State University in University Park, where his research in dynamic systems and

controls led to publications in diverse fields from railroad freight car dynamics to

adaptive control of artificial hearts. He pursues research in modeling and control

of engineering and biological systems.

J. Lowen Shearer (1921–1992) received his Sc.D. from the Massachusetts Insti-

tute of Technology. At MIT, between 1950 and 1963, he served as the group

leader in the Dynamic Analysis & Control Laboratory, and as a member of the

mechanical engineering faculty. From 1963 until his retirement in 1985, he was on

the faculty of Mechanical Engineering at Pennsylvania State University. Profes-

sor Shearer was a member of ASME’s Dynamic Systems and Control Division

and received that group’s Rufus Oldenberger Award in 1983. In addition, he

received the Donald P. Eckman Award (ISA, 1965), and the Richards Memorial

Award (ASME, 1966).

DYNAMIC MODELING AND

CONTROL OF ENGINEERING

SYSTEMS

THIRD EDITION

Bohdan T. Kulakowski

Deceased, formerly Pennsylvania State University

John F. Gardner

Boise State University

J. Lowen Shearer

Deceased, formerly Pennsylvania State University

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-86435-0

ISBN-13 978-0-511-28942-2

© John F. Gardner 2007

MATLAB and Simulink are trademarks of The MathWorks, Inc. and are used with
permission. The MathWorks does not warrant the accuracy of the text or exercises in this
book. This book’s use or discussion of MATLAB® and Simulink® software or related
products does not constitute endorsement or sponsorship by The MathWorks of a
particular pedagogical approach or particular use of the MATLAB® and Simulink®
software.

2007

Information on this title: www.cambridge.org/9780521864350

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-28942-1

ISBN-10 0-521-86435-6

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (EBL)

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521864350

Dedicated to the memories of Professor Bohdan T. Kulakowski (1942–2006),

the victims of the April 16, 2007 shootings at Virginia Tech, and all who are

touched by senseless violence. May we never forget and always strive to learn

form history.

Contents

Preface page xi

1 INTRODUCTION 1

1.1 Systems and System Models 1

1.2 System Elements, Their Characteristics, and the Role of Integration 4

Problems 9

2 MECHANICAL SYSTEMS 14

2.1 Introduction 14

2.2 Translational Mechanical Systems 16

2.3 Rotational–Mechanical Systems 30

2.4 Linearization 34

2.5 Synopsis 44

Problems 45

3 MATHEMATICAL MODELS 54

3.1 Introduction 54

3.2 Input–Output Models 55

3.3 State Models 61

3.4 Transition Between Input–Output and State Models 68

3.5 Nonlinearities in Input–Output and State Models 71

3.6 Synopsis 76

Problems 76

4 ANALYTICAL SOLUTIONS OF SYSTEM INPUT–OUTPUT EQUATIONS 81

4.1 Introduction 81

4.2 Analytical Solutions of Linear Differential Equations 82

4.3 First-Order Models 84

4.4 Second-Order Models 92

4.5 Third- and Higher-Order Models 106

4.6 Synopsis 109

Problems 111

5 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS 120

5.1 Introduction 120

5.2 Euler’s Method 121

5.3 More Accurate Methods 124

5.4 Integration Step Size 129

vii

viii Contents

5.5 Systems of Differential Equations 133

5.6 Stiff Systems of Differential Equations 133

5.7 Synopsis 138

Problems 139

6 SIMULATION OF DYNAMIC SYSTEMS 141

6.1 Introduction 141

6.2 Simulation Block Diagrams 143

6.3 Building a Simulation 147

6.4 Studying a System with a Simulation 150

6.5 Simulation Case Study: Mechanical Snubber 157

6.6 Synopsis 164

Problems 165

7 ELECTRICAL SYSTEMS 168

7.1 Introduction 168

7.2 Diagrams, Symbols, and Circuit Laws 169

7.3 Elemental Diagrams, Equations, and Energy Storage 170

7.4 Analysis of Systems of Interacting Electrical Elements 175

7.5 Operational Amplifiers 179

7.6 Linear Time-Varying Electrical Elements 186

7.7 Synopsis 188

Problems 189

8 THERMAL SYSTEMS 198

8.1 Introduction 198

8.2 Basic Mechanisms of Heat Transfer 199

8.3 Lumped Models of Thermal Systems 202

8.4 Synopsis 212

Problems 213

9 FLUID SYSTEMS 219

9.1 Introduction 219

9.2 Fluid System Elements 220

9.3 Analysis of Fluid Systems 225

9.4 Electrohydraulic Servoactuator 228

9.5 Pneumatic Systems 235

9.6 Synopsis 243

Problems 244

10 MIXED SYSTEMS 249

10.1 Introduction 249

10.2 Energy-Converting Transducers and Devices 249

10.3 Signal-Converting Transducers 254

10.4 Application Examples 255

10.5 Synopsis 261

Problems 261

Contents ix

11 SYSTEM TRANSFER FUNCTIONS 273

11.1 Introduction 273

11.2 Approach Based on System Response to Exponential Inputs 274

11.3 Approach Based on Laplace Transformation 276

11.4 Properties of System Transfer Functions 277

11.5 Transfer Functions of Multi-Input, Multi-Output Systems 283

11.6 Transfer Function Block-Diagram Algebra 286

11.7 MATLAB Representation of Transfer Function 293

11.8 Synposis 298

Problems 299

12 FREQUENCY ANALYSIS 302

12.1 Introduction 302

12.2 Frequency-Response Transfer Functions 302

12.3 Bode Diagrams 307

12.4 Relationship between Time Response and Frequency Response 314

12.5 Polar Plot Diagrams 317

12.6 Frequency-Domain Analysis with MATLAB 319

12.7 Synopsis 323

Problems 323

13 CLOSED-LOOP SYSTEMS AND SYSTEM STABILITY 329

13.1 Introduction 329

13.2 Basic Definitions and Terminology 332

13.3 Algebraic Stability Criteria 333

13.4 Nyquist Stability Criterion 338

13.5 Quantitative Measures of Stability 341

13.6 Root-Locus Method 344

13.7 MATLAB Tools for System Stability Analysis 349

13.8 Synopsis 351

Problems 352

14 CONTROL SYSTEMS 356

14.1 Introduction 356

14.2 Steady-State Control Error 357

14.3 Steady-State Disturbance Sensitivity 361

14.4 Interrelation of Steady-State and Transient Considerations 364

14.5 Industrial Controllers 365

14.6 System Compensation 378

14.7 Synopsis 383

Problems 383

15 ANALYSIS OF DISCRETE-TIME SYSTEMS 389

15.1 Introduction 389

15.2 Mathematical Modeling 390

15.3 Sampling and Holding Devices 396

15.4 The z Transform 400

x Contents

15.5 Pulse Transfer Function 405

15.6 Synopsis 407

Problems 408

16 DIGITAL CONTROL SYSTEMS 410

16.1 Introduction 410

16.2 Single-Loop Control Systems 410

16.3 Transient Performance 412

16.4 Steady-State Performance 418

16.5 Digital Controllers 421

16.6 Synopsis 423

Problems 424

APPENDIX 1. Fourier Series and the Fourier Transform 427

APPENDIX 2. Laplace Transforms 432

APPENDIX 3. MATLAB Tutorial 438

APPENDIX 4. Simulink Tutorial 463

Index 481

Preface

From its beginnings in the middle of the 20th century, the field of systems dynamics

and feedback control has rapidly become both a core science for mathematicians and

engineers and a remarkably mature field of study. As early as 20 years ago, textbooks

(and professors) could be found that purported astoundingly different and widely

varying approaches and tools for this field. From block diagrams to signal flow graphs

and bond graphs, the diversity of approaches, and the passion with which they were

defended (or attacked), made any meeting of systems and control professionals a

lively event.

Although the various tools of the field still exist, there appears to be a consensus

forming that the tools are secondary to the insight they provide. The field of system

dynamics is nothing short of a unique, useful, and utterly different way of looking

at natural and manmade systems. With this in mind, this text takes a rather neutral

approach to the tools of the field, instead emphasizing insight into the underlying

physics and the similarity of those physical effects across the various domains.

This book has its roots as lecture notes from Lowen Shearer’s senior-level

mechanical engineering course at Penn State in the 1970s with additions from Bohdan

Kulakowski’s and John Gardner’s experiences since the 1980s. As such, it reveals

those roots by beginning with lumped-parameter mechanical systems, engaging the

student on familiar ground. The following chapters, dealing with types of models

(Chapter 3) and analytical solutions (Chapter 4), have seen only minimal revisions

from the original version of this text, with the exception of modest changes in order of

presentation and clarification of notation. Chapters 5 and 6, dealing with numerical

solutions (simulations), were extensively rewritten for the second edition and fur-

ther updated for this edition. Although we made a decision to feature the industry-

standard software package (MATLAB®) in this book (Appendices 3 and 4 are tutori-

als on MATLAB and Simulink®), the presentation was specifically designed to allow

other software tools to be used.

Chapters 7, 8, and 9 are domain-specific presentations of electric, thermal, and

fluid systems, respectively. For the third edition, these chapters have been exten-

sively expanded, including operational amplifiers in Chapter 7, an example of lumped

approximation of a cooling fin in Chapter 8, and an electrohydraulic servovalve in

Chapter 9. Those using this text in a multidisciplinary setting, or for nonmechanical

engineering students, may wish to delay the use of Chapter 2 (mechanical systems)

to this point, thus presenting the four physical domains sequentially. Chapter 10

presents some important issues in dealing with multidomain systems and how they

interact.

xi

xii Preface

Chapters 11 and 12 introduce the important concept of a transfer function and

frequency-domain analysis. These two chapters are the most revised and (hopefully)

improved parts of the text. In previous editions of this text, we derived the complex

transfer function by using complex exponentials as input. For the third edition, we

retain this approach, but have added a section showing how to achieve the same

ends using the Laplace transform. It is hoped that this dual approach will enrich

student understanding of this material. In approaching these, and other, revisions,

we listened carefully to our colleagues throughout the world who helped us see where

the presentation could be improved. We are particularly grateful to Sean Brennan

(of Penn State) and Giorgio Rizzoni (of Ohio State) for their insightful comments.

This text, and the course that gave rise to it, is intended to be a prerequisite to

a semester-long course in control systems. However, Chapters 13 and 14 present a

very brief discussion of the fundamental concepts in feedback control, stability (and

algebraic and numerical stability techniques), closed-loop performance, and PID and

simple cascade controllers. Similarly, the preponderance of digitally implemented

control schemes necessitates a discussion of discrete-time control and the dynamic

effects inherent in sampling in the final chapters (15 and 16). It is hoped that these

four chapters will be useful both for students who are continuing their studies in

electives or graduate school and for those for which this is a terminal course of study.

Supplementary materials, including MATLAB and Simulink files for examples

throughout the text, are available through the Cambridge University Press web

site (http://www.cambridge.org/us/engineering) and readers are encouraged to check

back often as updates and additional case studies are made available.

Outcomes assessment, at the program and course level, has now become a fixture

of engineering programs. Although necessitated by accreditation criteria, many have

discovered that an educational approach based on clearly stated learning objectives

and well-designed assessment methods can lead to a better educational experience

for both the student and the instructor. In the third edition, we open each chapter

with the learning objectives that underlie each chapter. Also in this edition, the exam-

ples and end-of-chapter problems, many of which are based on real-world systems

encountered by the authors, were expanded.

This preface closes on a sad note. In March of 2006, just as the final touches were

being put on this edition, Bohdan Kulakowski was suddenly and tragically taken

from us while riding his bicycle home from the Penn State campus, as was his daily

habit. His family, friends, and the entire engineering community suffered a great loss,

but Bohdan’s legacy lives on in these pages, as does Lowen’s. As the steward of this

legacy, I find myself “standing on the shoulders of giants” and can take credit only

for its shortcomings.
JFG

Boise, ID

May, 2007

DYNAMIC MODELING AND

CONTROL OF ENGINEERING

SYSTEMS

1

Introduction

LEARNING OBJECTIVES FOR THIS CHAPTER

1–1 To work comfortably with the engineering concept of a “system” and its inter-

action with the environment through inputs and outputs.

1–2 To distinguish among various types of mathematical models used to represent

and predict the behavior of systems.

1–3 To recognize through (T-type) variables and across (A-type) variables when

examining energy transfer within a system.

1–4 To recognize analogs between corresponding energy-storage and energy-

dissipation elements in different types of dynamic systems.

1–5 To understand the key role of energy-storage processes in system dynamics.

1.1 SYSTEMS AND SYSTEM MODELS

The word “system” has become very popular in recent years. It is used not only in

engineering but also in science, economics, sociology, and even in politics. In spite

of its common use (or perhaps because of it), the exact meaning of the term is not

always fully understood. A system is defined as a combination of components that

act together to perform a certain objective. A little more philosophically, a system

can be understood as a conceptually isolated part of the universe that is of interest

to us. Other parts of the universe that interact with the system comprise the system

environment, or neighboring systems.

All existing systems change with time, and when the rates of change are signifi-

cant, the systems are referred to as dynamic systems. A car riding over a road can be

considered as a dynamic system (especially on a crooked or bumpy road). The limits

of the conceptual isolation determining a system are entirely arbitrary. Therefore any

part of the car given as an example of a system – its engine, brakes, suspension, etc. –

can also be considered a system (i.e., a subsystem). Similarly, two cars in a passing

maneuver or even all vehicles within a specified area can be considered as a major

traffic system.

The isolation of a system from the environment is purely conceptual. Every

system interacts with its environment through two groups of variables. The variables

in the first group originate outside the system and are not directly dependent on what

happens in the system. These variables are called input variables, or simply inputs.

The other group comprises variables generated by the system as it interacts with its

1

2 Introduction

Figure 1.1. A dynamic system.

environment. Those dependent variables in this group that are of primary interest

to us are called output variables, or simply outputs.

In describing the system itself, one needs a complete set of variables, called

state variables. The state variables constitute the minimum set of system variables

necessary to describe completely the state of the system at any given instant of time;

and they are of great importance in the modeling and analysis of dynamic systems.

Provided the initial state and the input variables have all been specified, the state

variables then describe from instant to instant the behavior, or response, of the

system. The concept of the state of a dynamic system is discussed in more detail in

Chap. 3. In most cases, the state-variable equations used in this text represent only

simplified models of the systems, and their use leads to only approximate predictions

of system behavior.

Figure 1.1 shows a graphical presentation of a dynamic system. In addition to the

state variables, parameters also characterize the system. In the example of the moving

car, the input variables would include throttle position, position of the steering wheel,

and road conditions such as slope and roughness. In the simplest model, the state

variables would be the position and velocity of the vehicle as it travels along a straight

path. The choice of the output variables is arbitrary, determined by the objectives of

the analysis. The position, velocity, or acceleration of the car, or perhaps the average

fuel flow rate or the engine temperature, can be selected as the output(s). Some of

the system parameters would be the mass of the vehicle and the size of its engine.

Note that the system parameters may change with time. For instance, the mass of

the car will change as the amount of fuel in its tank increases or decreases or when

passengers embark or disembark. Changes in mass may or may not be negligible for

the performance of a car but would certainly be of critical importance in the analysis

of the dynamics of a ballistic missile.

The main objective of system analysis is to predict the manner in which a system

will respond to various inputs and how that response changes with different system

parameter values. In the absence of the tools introduced in this book, engineers are

often forced to build prototype systems to test them. Whereas the data obtained

from the testing of physical prototypes are very valuable, the costs, in time and

money, of obtaining these data can be prohibitive. Moreover, mathematical models

are inherently more flexible than physical prototypes and allow for rapid refinement

of system designs to optimize various performance measures. Therefore one of the

early major tasks in system analysis is to establish an adequate mathematical model

that can be used to gain the equivalent information that would come from several

different physical prototypes. In this way, even if a final prototype is built to verify

the mathematical model, the modeler has still saved significant time and expense.

1.1. Systems and System Models 3

A mathematical model is a set of equations that completely describes the rela-

tionships among the system variables. It is used as a tool in developing designs or

control algorithms, and the major task for which it is to be used has basic implications

for the choice of a particular form of the system model.

In other words, if a model can be considered a tool, it is a specialized tool, devel-

oped specifically for a particular application. Constructing universal mathematical

models, even for systems of moderate complexity, is impractical and uneconomical.

Let us use the moving automobile as an example once again. The task of developing

a model general enough to allow for studies of ride quality, fuel economy, traction

characteristics, passenger safety, and forces exerted on the road pavement (to name

just a few problems typical for transportation systems) could be compared to the

task of designing one vehicle to be used as a truck, for daily commuting to work in

New York City, and as a racing car to compete in the Indianapolis 500. Moreover,

even if such a supermodel were developed and made available to researchers (free),

it is very likely that the cost of using it for most applications would be prohibitive.

Thus, system models should be as simple as possible, and each model should be

developed with a specific application in mind. Of course, this approach may lead

to different models being built for different uses of the same system. In the case

of mathematical models, different types of equations may be used in describing the

system in various applications.

Mathematical models can be grouped according to several different criteria.

Table 1.1 classifies system models according to the four most common criteria: appli-

cability of the principle of superposition, dependence on spatial coordinates as well

Table 1.1. Classification of system models

Type of model Classification criterion Type of model equation

Nonlinear Principle of superposition does
not apply

Nonlinear differential equations

Linear Principle of superposition applies Linear differential equations

Distributed Dependent variables are
functions of spatial coordinates
and time

Partial differential equations

Lumped Dependent variables are
independent of spatial
coordinates

Ordinary differential equations

Time-varying Model parameters vary in time Differential equations with
time-varying coefficients

Stationary Model parameters are constant
in time

Differential equations with constant
coefficients

Continuous Dependent variables defined
over continuous range of
independent variables

Differential equations

Discrete Dependent variables defined
only for distinct values of
independent variables

Time-difference equations

4 Introduction

as on time, variability of parameters in time, and continuity of independent variables.

Based on these criteria, models of dynamic systems are classified as linear or nonlin-

ear, lumped or distributed, stationary time invariant or time varying, continuous or

discrete, respectively. Each class of models is also characterized by the type of math-

ematical equations employed in describing the system. All types of system models

listed in Table 1.1 are discussed in this book, although distributed models are given

only limited attention.

1.2 SYSTEM ELEMENTS, THEIR CHARACTERISTICS,

AND THE ROLE OF INTEGRATION

The modeling techniques developed in this text focus initially on the use of a set

of simple ideal system elements found in four main types of systems: mechanical,

electrical, fluid, and thermal. Transducers, which enable the coupling of these types

of system to create mixed-system models, will be introduced later.

This set of ideal linear elements is shown in Table 1.2, which also provides their

elemental equations and, in the case of energy-storing elements, their energy-storage

equations in simplified form. The variables, such as force F and velocity v used in

mechanical systems, current i and voltage e in electrical systems, fluid flow rate Q f

and pressure P in fluid systems, and heat flow rate Qh and temperature T in thermal

systems, have also been classified as either T-type (through) variables, which act

through the elements, or A-type (across) variables, which act across the elements.

Thus force, current, fluid flow rate, and heat flow rate are called T variables, and

velocity, voltage, pressure, and temperature are called A variables. Note that these

designations also correspond to the manner in which each variable is measured in a

physical system. An instrument measuring a T variable is used in series to measure

what goes through the element. On the other hand, an instrument measuring an

A variable is connected in parallel to measure the difference across the element.

Furthermore, the energy-storing elements are also classified as T-type or A-type

elements, designated by the nature of their respective energy-storage equations: for

example, mass stores kinetic energy, which is a function of its velocity, an A variable;

hence mass is an A-type element. Note that although T and A variables have been

identified for each type of system in Table 1.2, both T-type and A-type energy-storing

elements are identified in mechanical, electrical, and fluid systems only. In thermal

systems, the A-type element is the thermal capacitor but there is no T-type element

that would be capable of storing energy by virtue of a heat flow through the element.

In developing mathematical models of dynamic systems, it is very important not

only to identify all energy-storing elements in the system but also to determine how

many energy-storing elements are independent or, in other words, in how many ele-

ments the process of energy storage is independent. The energy storage in an element

is considered to be independent if it can be given any arbitrary value without changing

any previously established energy storage in other system elements. To put it simply,

two energy-storing elements are not independent if the amount of energy stored in

one element completely determines the amount of energy stored in the other ele-

ment. Examples of energy-storing elements that are not independent are rack-and-

pinion gears, and series and parallel combinations of springs, capacitors, inductors,

Table 1.2. Ideal system elements (linear)

Mechanical Mechancial

System type translational rotational Electrical Fluid Thermal

A-type variable Velocity, v Velocity, � Voltage, e Pressure, P Temperature, T

A-type element Mass, m Mass moment of inertia, J Capacitor, C Fluid Capacitor, C f Thermal capacitor, Ch

Elemental equations F = m
dv

dt
T = J

d�

dt
i = C

de

dt
Q f = C f

dP

dt
Qh = Ch

dT

dt
Energy stored Kinetic Kinetic Electric field Potential Thermal

Energy equations Ek =
1

2
mv2

Ek =
1

2
J�2

Ee =
1

2
Ce2

Ep =
1

2
C f P2

Et =
1

2
ChT2

T-type variable Force, F Torque, T Current, i Fluid flow rate, Q f Heat flow rate, Qh

T-type element Compliance, 1/k Compliance, 1/K Inductor, L Inertor, I None

Elemental equations v =
1

k

dF

dt
� =

1

K

dT

dt
e = L

di

dt
P = I

dQ f

dt
Energy stored Potential Potential Magnetic field Kinetic

Energy equations EP =
1

2k
F2

EP =
1

2K
T2

Em =
1

2
Li2

Ek =
1

2
I Q2

f

D-type element Damper, b Rotational damper, B Resistor, R Fluid resistor, Rf Thermal resistor, Rh

Elemental equations F = bv T = B� i =
1

R
e Q f =

1

Rf

P Qh =
1

Rh

T

Rate of energy
dissipated dED

dt
= Fv

=
1

b
F2

= bv2

dED

dt
= T�

=
1

B
T2

= B�2

dED

dt
= ie

= Ri2

=
1

R
e2

dED

dt
= Q f P

= Rf Q2
f

=
1

Rf

P2

dED

dt
= Qh

Note: A-type variable represents a spatial difference across the element.

5

6 Introduction

etc. As demonstrated in the following chapters, the number of independent energy

storing elements in a system is equal to the order of the system and to the number

of state variables in the system model.

The A-type elements are said to be analogous to each other; T-type elements are

also analogs of each other. This physical analogy is also demonstrated mathematically

by the same form of the elemental equations for each type of element. The general

form of the elemental equations for an A-type element in mechanical, electrical,

fluid, and thermal systems is

VT = EA

dVA

dt
, (1.1)

where VT is a T variable, VA is an A variable, and EA is the parameter associated

with an A-type element. The general form of the elemental equations for a T-type

element in mechanical, electrical, and fluid systems is

VA = ET

dVT

dt
. (1.2)

Equation (1.2) does not apply to thermal systems because of lack of a T-type element

in those systems.

Because differentiation is seldom, if ever, encountered in nature, whereas inte-

gration is very commonly encountered, the essential dynamic character of each

energy-storage element is better expressed when its elemental equation is converted

from differential form to integral form. Thus general elemental equations (1.1) and

(1.2) in integral form are

VA(t) = VA(0) +
1

EA

∫ t

0

VTdt, (1.3)

VT(t) = VT(0) +
1

ET

∫ t

0

VAdt . (1.4)

To better understand the physical significance of integral equations (1.3) and (1.4),

consider a mechanical system. The A-type element in a mechanical system is mass,

and the equation corresponding to Eq. (1.3) is

v(t) = v(0) +
1

m

∫ t

0

Fdt . (1.5)

This equation states that the velocity of a given mass m increases as the integral

(with respect to time) of the net force applied to it. This concept is formally known

as Newton’s second law of motion. It also implicitly says that, lacking a very, very

large (infinite) force F , the velocity of mass m cannot change instantaneously. Thus

the kinetic energy Ek = (m/2)v2 of the mass m is also accumulated over time when

the force F is finite and cannot be changed in zero time.

The integral equation for a T-type element in mechanical systems, compliance

(1/k), corresponding to Eq. (1.4) is

Fk(t) = Fk(0) + k

∫ t

0

v21dt, (1.6)

1.2 System Elements, their Characteristics, and the Role of Integration 7

where Fk is the force transmitted by the spring k andv21 is the velocity of one end of the

spring relative to the velocity at the other end. This equation states that the spring

force Fk cannot change instantaneously and thus the amount of potential energy

stored in the spring Ep = (1/2k)F2
k is accumulated over time and cannot be changed

in zero time in a real system. Although Eq. (1.6) might seem to be a particularly

clumsy statement of Hooke’s law for springs (F = kx), it is essential for the purposes

of system dynamic analysis that the process of storing energy in the spring as one of

a cumulative process (integration) over time.

Similar elemental equations in integral form may be written for all the other

energy-storage elements, and similar conclusions can be drawn concerning the role

of integration with respect to time and how it affects the accumulation of energy

with respect to time. These two phenomena, integration and energy storage, are

very important aspects of dynamic system analysis, especially when energy-storage

elements interact and exchange energy with each other.

The energy-dissipation elements, or D elements, store no useful energy and have

elemental equations that express instantaneous relationships between their A vari-

ables and their T variables, with no need to wait for time integration to take effect. For

example, the force in a damper is instantaneously related to the velocity difference

across it (i.e., no integration with respect to time is involved).

Furthermore, these energy dissipators absorb energy from the system and exert a

“negative-feedback” effect (to be discussed in detail later), which provides damping

and helps ensure system stability.

EXAMPLE 1.1

Consider a simplified diagram of one-fourth of an automobile, often referred to as a

“quarter-car” model, shown schematically in Fig. 1.2. Such a model of vehicle dynamics

is useful when only bounce (vertical) motion of the car is of interest, whereas both pitch

and roll motions can be neglected.

Forward velocity

Sprung mass

Unsprung mass
(wheel assembly)

Tire stiffness

Elevation profile
of road

m

m

k

k

x

x

x

3

2

1

s

s s

u

t

b

(vehicle body)

Shock absorber

Figure 1.2. Schematic of a quarter-car model.

8 Introduction

Table 1.3. Elements of the quarter-car model

Element Element type Type of energy stored Energy equation

ms A-type energy storing Kinetic Ek =
1

2
msv

2
3

mu A-type energy storing Kinetic Ek =
1

2
muv

2
2

ks T-type energy storing Potential Ep =
1

2
ks(x2 − x3)2

kt T-type energy storing Potential Ep =
1

2
kt (x1 − x2)2

bs D-type energy dissipating None
dED

dt
= bs(v2 − v3)2

List all system elements, indicate their type, and write their respective energy equa-

tions. Draw input–output block diagrams, such as that shown in Fig. 1.1, showing what

you consider to be the input variables and output variables for two cases:

(a) in a study of passenger ride comfort, and

(b) in a study of dynamic loads applied by vehicle tires to road pavement.

SOLUTION

There are four independent energy-storing elements, ms , mu, ks , and kt . There is also

one energy-dissipating element, damper bs, representing the shock absorber. The system

elements, their respective types, and energy-storage or -dissipation equations are given

in Table 1.3.

The input variable to the model is the history of the elevation profile, x1(t), of the

road surface over which the vehicle is traveling. In most cases, the elevation profile

is measured as a function of distance traveled, and it is then combined with vehicle

forward velocity data to obtain x1(t).

In studies of ride comfort, the main variable of interest is usually acceleration of

the vehicle body,

a3 =
dv3

dt
.

In studies of dynamic tire loads, on the other hand, the variable of interest is the

vertical force applied by the tire to the road surface:

Ft = kt (x1 − x2).

Simple block diagrams for the two cases are shown in Fig. 1.3. There is an important

observation to make in the context of this example. When a given physical system is

modeled, different output variables can be selected as needed for the modeling task

at hand.

Problems 1.1–1.2 9

a3(t)

(a)

x1(t)
Quarter-Car Model

Quarter-Car Model

x1(t) Ft(t)

(b)

Figure 1.3. Block diagrams of the quarter-
car models used in (a) ride comfort and (b)
dynamic tire load studies.

PROBLEMS

1.1 Using an input–output block diagram, such as that shown in Fig. 1.1. show what you

consider to be the input variables and the output variables for an automobile engine,

shown schematically in Fig. P1.1.

Figure P1.1.

1.2 For the automotive alternator shown in Fig. P1.2, prepare an input–output diagram

showing what you consider to be inputs and what you consider to be outputs.

10 Introduction

Figure P1.2.

1.3 Prepare an input–output block diagram showing what you consider to be the inputs

and the outputs for the domestic hot water furnace shown schematically in Fig. P1.3.

Figure P1.3.

1.4 A simple drawing of a hand-powered egg beater is shown in Fig. P1.4. The handle

driven by torque Ti turns a large double-sided crown wheel, which in turn drives two

bevel pinions to spin the beaters. The diameter of the crown wheel is much larger than

the diameter of the bevel pinions, so the rotational velocity of the pinions (and the

beaters), �b, is much greater the rotational velocity of the crown wheel, �c. The shafts that

connect the bevel pinions to the beaters are slightly compliant, and the beaters experience

a frictional resistance as they spin while beating the eggs. Make reasonable simplifying

assumptions and list all elements that you would include in a mathematical model of the

egg beater, indicate their types, and write their corresponding energy equations. How

many independent energy-storing elements are in the system?

1.5 Figure P1.5 is a schematic representation of a wind turbine used for irrigation. The

turbine is located on the rim of a canyon where the wind speed (Vw) is highest. The

velocity of the rotor (the blade assembly) is �r , and the electrical generator runs at �g

because of a gearbox in the nacelle of the wind turbine. Electrical power (Ve and Ie) is

supplied to the motor and pump, located on the riverbank at the bottom of the canyon.

Problems 1.3–1.5 11

Crown wheel

Bevel pinions

Beaters

Ti

Wc

Wb Wb

Figure P1.4.

Wind speed, Vw

r

p

h

Ω

Ω

c

electrical
lines

water pipe

Wind turbine
generator

water storage tank

electric motor and
irrigation pump

ht

Figure P1.5. Wind turbine system to power a canyon irrigation pump.

12 Introduction

The motor spins the pump at a fixed velocity, �p, and the water is pumped to a holding

pond above the canyon rim at a height of hc above the river.

(a) Prepare an input–output block diagram of the wind turbine–generator as a system.

Identify the energy-storing elements.

(b) Prepare an input–output block diagram of the motor–pump as a system.

(c) Prepare an input–output block diagram of this system and specify the energy-storing

elements of the system. For each energy-storing element, chose the appropriate A-

or T-type element from Table 1.2 that would be appropriate for each component of

the system. Briefly explain your choices.

1.6 A schematic representation of an artificial human heart is shown in Fig. P1.6. The

heart consists of two flexible chambers (blood sacs) enclosed in a rigid case. The chambers

are alternately squeezed by flat plates that are, in turn, moved back and forth by a dc

motor and rollerscrew arrangement. Two one-way valves (prosthetic heart valves) are

used in each blood sac to ensure directional flow. The motor is powered by a battery pack

through a controller circuit. The blood sac shown on the left-hand side in the figure (the

right heart) takes blood returning from the body (through the vena cavae) and pumps it

to the lungs (through the pulmonary artery). Oxygenated blood returns from the lungs

(via the pulmonary veins) to the left heart where it is then pumped to the body through

the aorta.

Identify the energy-storing elements of the system. If the intent of the model is to

design a control system, what would be appropriate inputs and outputs of this system?

rigid case

dc motor

rollerscrew

pusherplates

left pump (from
lungs, to body)

right pump (from
body, to lungs)

Figure P1.6. Schematic of a total artificial heart.

1.7 As mobile electronic systems become more efficient and require less energy, it

becomes more attractive to generate power by scavenging energy from the motion inher-

ent in moving these systems around. Analogous to the self-winding wristwatches that

were popular in the 1970s, this concept makes use of a mechanical oscillator coupled with

an electromagnetic generator to keep a battery charged.

Figure P1.7 shows a schematic of just such a system, proposed for a cell phone. The

motion the phone experiences while in your backpack as you walk across campus is given

as yb in the figure. The mass (m) and spring (k) make up the mechanical oscillator. The

mass is actually a permanent magnet that generates a time-varying (because of its motion)

magnetic field in the vicinity of wire coil. The coil has both resistance (R) and inductance

(L) and a current (i) is induced in the coil because of the motion of the magnet. This

current supplies a charging circuit that maintains a set voltage (e) on the battery.

Problems 1.7–1.8 13

Identify the energy-storing elements of this system and draw an input–output block

diagram. From Table 1.2, identify the A- and T-type elements appropriate for each energy-

storing element and briefly discuss your choices.

Figure P1.7. Schematic of energy-generating oscillator.

1.8 A motorized wheelchair uses a battery pack to supply two dc motors that, in turn,

drive the left and right wheels through a belt transmission. The wheelchair is controlled

through a joystick that allows the user to select forward and backward rotation of the

wheels. The user accomplishes turning by running the two motors in opposite directions,

thus rotating the chair about a vertical axis. The battery voltage is Eb, the internal moving

parts of the motors have rotational inertia (Ja), and the electrical coils of the motors have

both resistance (Ra) and inductance (La). The belt transmissions drive the wheels, which

have rotational inertia (Jw) through a drive ratio given by the parameter N. The mass of

the chair and rider is given by mt and the grade is given by the angle � .

Is the energy stored in the motor armatures, wheels, and chair (because of kinetic

energy of the inertias) independent? Why or why not?

2

Mechanical Systems

LEARNING OBJECTIVES FOR THIS CHAPTER

2–1 To apply constitutive equations for the fundamental translational and rotational

mechanical components: lumped mass, springs, and dampers.

2–2 To derive correct equations of motion for systems involving multiple instances

of these fundamental components, some of which may be nonlinear.

2–3 To apply a linearization procedure based on Taylor series expansion to approx-

imate nonlinear systems with simplified linear models.

2.1 INTRODUCTION

As indicated in Chap. 1, three basic ideal elements are available for modeling ele-

mentary mechanical systems: masses, springs, and dampers. Although each of these

elements is itself a system with all the attributes of a system (inputs, parameters, state

variables, and outputs), the use of the term “system” usually implies a combination of

interacting elements. In this chapter, systems composed of only mechanical elements

are discussed. In addition to the translational elements (moving along a single axis)

introduced in Chap. 1, a corresponding set of rotational elements (rotating about

a single axis) is introduced to deal with rotational–mechanical systems and mixed

(translational and rotational) systems.

Also, this chapter deals with only so-called lumped-parameter models of real

mechanical systems. In certain situations, such as modeling a real spring having both

mass and stiffness uniformly distributed from one end to the other, suitable lumped-

parameter models can be conceived that will adequately describe the system under

at least limited conditions of operation. For example, if a real spring is compressed

very slowly, the acceleration of the distributed mass is very small so that all the force

acting on one end is transmitted through it to the other end; under these conditions

the spring may be modeled as an ideal spring. On the other hand, if the real spring is

being driven in such a manner that the forces acting on it cause negligible deflection

of its coils, it may be modeled as an ideal mass. When a real spring is driven so as to

cause both significant acceleration of its mass and significant deflection of its coils,

combinations of lumped ideal mass(es) and lumped ideal spring(s) are available to

model the real spring adequately, depending on the type of vibration induced in it.

And, if the real spring is being driven at frequencies well below the lowest-frequency

mode of vibration for that type of forcing, simple combinations of ideal masses and

14

2.1. Introduction 15

Figure 2.1. Several possible lumped-parameter models of a real spring. In (d), (e), and (f), the
choice of values for ma or mb and mc depends on relative amplitudes of the forcing functions, i.e.,
the inputs.

ideal springs will usually suffice to model it adequately. These combinations are

shown for the corresponding forcing conditions in Fig. 2.1.

As the frequencies of the forcing functions approach the lowest natural frequency

for that type of forcing, the use of lumped-parameter models becomes questionable;

unless a many-element model is used (i.e., a finite-element model), the formulation

of the partial differential equations for a distributed-parameter model is advisable.

Additionally, it is important to note that essentially every existing engineering

system is nonlinear when considered over the entire possible (even if sometimes not

16 Mechanical Systems

Figure 2.2. Free-body diagram of an ideal mass.

practical) range of its input variables. However, developing and solving mathematical

models for nonlinear systems is usually much more difficult than it is for systems that

can reasonably be considered to be linear. In Section 2.4, a systematic linearization

procedure is introduced whereby the nonlinear system characteristics are replaced

with approximate linear formulas over a relatively small range of variations of the

input variables.

2.2 TRANSLATIONAL MECHANICAL SYSTEMS

2.2.1 Translational Masses

Analysis of mechanical systems is based on the principles embodied in Newton’s laws

of motion and the principle of compatibility (no gaps between connected elements).

An ideal mass, depicted schematically in free-body diagram form in Fig. 2.2, moves

in relation to a nonaccelerating frame of reference, which is usually taken to be a

fixed point on the earth (ground) – however, the frame of a nonaccelerating vehicle

could be used instead.

The elemental equation for an ideal mass m, based on Newton’s second law,1 is

m

(
dv1

dt

)

= Fm, (2.1)

where v1 is the velocity of the mass m relative to the ground reference point and Fm

is the net force (i.e., the sum of all the applied forces) acting on the mass in the x

direction.

Because v1 = dx1/dt , the variation of the distance x1 of the mass from the refer-

ence point is related to Fm by

m

(
d2x1

dt2

)

= Fm. (2.2)

1 Newton’s second law expressed in more general form is

m

(
d2x

dt2

)

=
n∑

i=1

Fi .

2.2. Translational Mechanical Systems 17

Figure 2.3. Schematic diagram of automobile with applied force.

EXAMPLE 2.1

Find the response (in terms of its acceleration, velocity, and position versus time) of a

3000-lb automobile to a force Fi of 500 lb, which is suddenly applied by three members of

the football squad (i.e., a step change in force occurring at t = 0), ignoring friction effects

(see Fig. 2.3). Assume that the football players are able to maintain the applied force

of 500 lb regardless of how fast the automobile moves. Reference r1 is the local ground

reference – in other words, the starting point for vehicle motion.

SOLUTION

Using Eq. (2.1) – that is, ignoring friction effects – we have

dv1

dt
=

(
1

m

)

Fi (t). (2.3)

Because the vehicle acceleration a1(t) = dv1/dt , we see that it undergoes a step change

from 0 to (32.2)(500)/3000 at t = 0 and remains at that value until the applied force is

removed. Next, we may separate variables in Eq. (2.3) and integrate with respect to time

to solve for v1 = (t),

∫ v1(t)

v1(0)

dv1 =
(

1

m

) ∫ t

0

Fi (t)dt, (2.4)

which yields

v1(t) − v1(0) =
(32.2)

6
t − 0

or

v1(t) = v1(0) + 5.37t ft s; i.e., a ramp starting at t = 0 having a slope of

5.37 ft/s2. Similarly, a second integration (assuming the initial

velocity is zero) with respect to time yields (2.5)

∫ x1(t)

x1(0)

dx = 5.37

∫ t

0

tdt

18 Mechanical Systems

Figure 2.4. Response of an automobile to a suddenly applied force.

or

x1(t) = x1(0) + 2.68t2 ft; i.e., a parabola starting at t = 0. (2.6)

The results are shown as functions of time in Fig. 2.4 along with the input force Fi.

Note that it takes time to build up changes in velocity and displacement because of

the integrations involved. Example 2.1 displays one of the first indications of the role

played by integration in determining the dynamic response of a system. From another

point of view, the action of the applied force represents work being done on the mass as

it accelerates, increasing the kinetic energy stored in it as time goes by. The rate at which

energy is stored in the system is equal to the rate at which work is expended on it by the

members of the football squad (the first law of thermodynamics):

d�K

dt
= Fiv1. (2.7)

Separating variables and integrating with respect to time, we find

∫
�k(t)

�k(0)

d�K = Fiv1dt =
∫ t

0

mv1

(
dv1

dt

)

dt = m

∫ v1(t)

v1(0)

v1(t)dv1,

so that

�K(t) = �K(0) +
(m

2

)

v1(t)2. (2.8)

Thus the stored energy accumulates over time, proportional to the square of the velocity,

as the work is being done on the system; and the mass is an A-type element storing energy

that is a function of the square of its A variable v1.

2.2. Translational Mechanical Systems 19

As this text proceeds to the analysis of more complex systems, the central role played

by integration in shaping dynamic system response will become more and more evident.

It should be noted in passing that it would not be reasonable to try to impose on the

automobile a step change in velocity, because this would be an impossible feat for three

football players – or even for 10 million football players! Such a feat would require a very,

very great (infinite) force as well as a very, very great (infinite) source of power – infinite

sources! Considering that one definition of infinity is that it is a number greater than the

greatest possible imaginable number, would it be likely to find or devise an infinite force

and an infinite power source?

2.2.2 Translational Springs

An ideal translational spring that stores potential energy as it is deflected along its

axis may also be depicted within the same frame of reference used for a mass. Figure

2.5 shows such a spring in two ways: in mechanical drawing format in relaxed state

with Fk = 0 [Fig. 2.5(a)] and in stylized schematic form [Fig. 2.5(b)] with the left

end displaced relative to the right end as a result of the action of Fk shown acting at

both ends in free-body diagram fashion. The references r1 and r2 are local ground

references.

Note that, because an ideal spring contains no mass, the force transmitted by it is

undiminished during acceleration; therefore the forces acting on its ends must always

be equal and opposite (Newton’s third law of motion). The elemental equation for

such a spring derives from Hooke’s law, namely,

Fk = k[x21 − (x21)0], (2.9)

where (x21)0 is the free length of the spring, i.e., its length when Fk = 0. Differentiating

Eq. (2.9) with respect to time yields

dFk

dt
= kv21, (2.10)

Figure 2.5. Free-body diagram representation of an
ideal spring.

20 Mechanical Systems

where v21 = dx21/dt is the velocity of the right-hand end of the spring, point (2),

relative to the velocity of the left-hand end, point (1). Because [x21 − (x21)0] = x2 −
x1, Eq. (2.9) is simplified to

Fk = k(x2 − x1), (2.11)

where (x2 − x1) is the deflection of the spring is from its initial free length.

When the spring is nonlinear, it does not have truly constant stiffness k, and it

is advisable to employ a nonlinear symbol designation and a nonlinear function to

describe it, as follows:

FNLS = fNL(x2 − x1).

Linearization of this equation for small perturbations will yield an incremental stiff-

ness kinc that is often adequate for use in a small region near the normal operating

point for the spring, as discussed in Section 2.4.

EXAMPLE 2.2

Find the response (in terms of force Fk and deflection x1) of the spring shown in Fig. 2.6,

having k = 8000 lb/in., when it is subjected to a 20-in./s step change in input velocity from

zero, starting from its free length at t = 0.

SOLUTION

Separating variables in Eq. (2.10) and integrating with respect to time, we have
∫ Fk(t)

Fk(0)

dFk = k

∫ t

0

v1dt = (8000)(20)

∫ t

0

dt,

Fk(t) − 0 = (8000)(20)t − 0,

or

Fk(t) = 160,000t lb. (2.12)

We may use the definition

v1 ≡
dx1

dt
. (2.13)

Figure 2.6. An ideal spring subjected to a step change in velocity.

2.2. Translational Mechanical Systems 21

Figure 2.7. Responses for an ideal spring subjected to a step change in velocity.

Separating variables in Eq. (2.13) and integrating again with respect to time yields

∫ x1(t)

x1(0)

dx1 =
∫ t

0

v1dt =
∫ t

0

20 dt,

or

x1(t) − 0 = 20t − 0,

or

x1(t) = 20t in. (2.14)

The results are shown in Fig. 2.7.

Again, the essential role played by integration in finding the dynamic response of

a system is evident. From an energy point of view, the rate at which potential energy

is stored in the spring is equal to the rate at which the steadily increasing force does

work on the spring as it deflects the spring:

d�P

dt
= Fkv1.

Separating variables and integrating yields

∫
�p(t)

�p(0)

d�p =
∫ t

0

Fkv1dt =
(

1

k

) ∫ t

0

Fk

(
dFk

dt

)

dt =
(

1

k

) ∫ Fk(t)

Fk(0)

FkdFk,

so that

�p(t) − 0 =
1

2k
F2

k − 0

22 Mechanical Systems

Figure 2.8. Free-body diagram of an ideal translational damper.

or

�p(t) =
(

1

2k

)

F2
k . (2.15)

Thus it takes time for the work input to add to the accumulated energy stored in

the spring. A spring is a T-type element, storing energy as a function of the square

of its T variable Fk.

Note again, as for changing velocity in Example 2.1, it would not be realistic here

to try to apply a step change in force to a spring; such a force source would have

to move at a very, very great velocity to deflect the spring suddenly, which would

require a very, very great power source. In general it can be stated that inputs that

would suddenly add to the stored energy in a system are not realistic and cannot be

achieved in the natural world.

2.2.3 Translational Dampers

An ideal damper is shown in free-body diagram form in Fig. 2.8. Because an ideal

damper contains no mass, the force transmitted through it is undiminished during

acceleration; therefore the forces acting at its ends must always be equal and opposite.

The elemental equation for an ideal damper is

Fb = b(v2 − v1) = bv21. (2.16)

A damper is a D-type element that dissipates energy. With this element there

is no storage of retrievable mechanical work (work being done by an applied force

becomes dissipated as thermal internal energy), and the relationship between force

and velocity is instantaneous. Thus it is realistic to apply step changes of either

force or velocity to such an element. Damping plays a key role in influencing speed

of response and stability of many systems.

Although ideal damping does exist, arising from viscous friction between well-

lubricated moving mechanical parts of a system, nonideal forms of damping are very

often present. Nonideal damping is usually characterized by nonlinearities that can

be severe, especially where poorly lubricated parts move with metal-to-metal contact.

In other cases the nonlinearity is the result of hydrodynamic flow effects, in which

internal inertia forces predominate, such as in the fluid coupling discussed briefly in

Section 2.4 under the topic of linearization and in hydraulic shock absorbers that use

orifice-type energy dissipation.

For the case in which the damping is nonlinear, there is no damping constant b,

and the elemental equation is expressed as a nonlinear function of velocity:

FNLD = fNL(v12). (2.17)

2.2. Translational Mechanical Systems 23

Linearization for variations around an operating point is often feasible, especially

when no discontinuities exist in the F versus v characteristic. Otherwise, computer

simulation of the damper characteristic is required.

2.2.4 Elementary Systems – Combinations of Translational Elements

The equations used to describe a combination of interacting elements constitute a

mathematical model for the system. Other types of models are discussed in later

chapters.

Newton’s second law was used to model mathematically the motion of an ideal

mass in Subsection 2.2.1. Now Newton’s third law is used to sum forces at intercon-

nection points between the elements, ensuring continuity of force in the system. A

choice of common variables for common motions (position, velocity) at connection

points ensures compatibility2 (i.e., no gaps between connected elements).

EXAMPLE 2.3

Consider the spring–damper system shown in Fig. 2.9. This combination of elements is

useful for absorbing the impulsive interaction with an impinging system, i.e., a kind of

shock absorber. As developed here, it is intended that an input force Fi be the forcing

function, and the resulting motion, x1 − x2 (or v1 − v2), is then to be considered the result-

ing output. The relationship between input and output is to be modeled mathematically.

Qualitatively speaking, the system responds to the force Fi, storing energy in the spring

and dissipating energy in the damper until the force is reduced to zero, whereupon the

spring gives up its stored energy and the damper continues to dissipate energy until the

system returns to its original state. The net result, after the force has been removed, is

that energy that has been delivered to the system by the action of the force Fi has been

dissipated by the damper and the system has returned to its original relaxed state.

The object here is to develop a mathematical model relating the output motion to

the input force. The use of this mathematical model in solving for the output motion as

a function of time is left to a later chapter.

SOLUTION

As an introductory aid in visualizing the action of each member of the system and defining

variables, Fig. 2.9 shows diagrams of three different kinds for this system: a cross-sectioned

mechanical drawing showing the system in its initial relaxed state with Fi = 0 [Fig. 2.9(a)],

a stylized diagram showing the system in an active, displaced state when the force Fi is

acting [Fig. 2.9(b)], and a free-body diagram of the system “broken open” to show the

free-body diagram for each member of the system [Fig. 2.9(c)]. Applying Newton’s third

law at point (1) yields

Fi = Fk + Fb. (2.18)

For the elemental equations,

Fk = k(x1 − x2), (2.19)

Fb = b(v1 − v2). (2.20)

2 The principles of continuity and compatibility are discussed in detail in J. L. Shearer, A. T. Murphy,

and H. H. Richardson, Introduction to System Dynamics (Addison-Wesley, Reading, MA, 1967).

24 Mechanical Systems

Figure 2.9. Diagrams for spring–damper system.

Definitions:

v1 ≡
dx1

dt
, (2.21)

v2 ≡
dx2

dt
. (2.22)

The system is now described completely by a necessary and sufficient set of five

equations containing the five unknown variables x1, Fk, Fb, v1, and v2. Note: The number

of independent describing equations must equal the number of unknown variables before

one can proceed to eliminate the unwanted unknown variables.

Combining Eqs. (2.18)–(2.22) to eliminate Fk,Fb,v1, and v2 yields

b

(
dx1

dt
−

dx2

dt

)

+ k(x1 − x2) = Fi . (2.23)

2.2. Translational Mechanical Systems 25

Note that x2 and dx2/dt have been left in Eq. (2.23) for the sake of generality to cover

the situation in which the right-hand side of the system might be in motion, as it could

be in some systems. Because the right-hand side here is rigidly connected to the frame of

reference g, these variables are zero, leaving

b
dx1

dt
+ kx1 = Fi . (2.24)

This first-order differential equation is the desired mathematical model, describing

in a very concise way the events described earlier in verbal form. It may be noted, in the

context of state variables to be discussed in Chap. 3, that a first-order system such as this

requires only one state variable, in this case x1, for describing its state from instant to

instant as time passes.

Given the initial state of the system in Example 2.3 and the nature of Fi as a

function of time, it is possible to solve for the response of the system as a function of

time. The procedure for doing this is discussed in later chapters.

The steps involved in producing mathematical models of simple mechanical sys-

tems are also illustrated in the following additional examples.

EXAMPLE 2.4

A mass m, supported only by a bearing having a pressurized film of viscous fluid, undergoes

translation (i.e., motion along a straight line in the x direction) as the result of having a

time-varying input force Fi applied to it, as shown in Fig. 2.10. The object is to develop

a mathematical model that relates the velocity v1 of the mass to the input force Fi .

Expressed verbally, the system responds to the input force as follows. Initially the input

Figure 2.10. Diagrams for mass–damper system.

26 Mechanical Systems

force accelerates the mass so that its velocity increases, accompanied by an increase in its

kinetic energy; however, as the velocity increases, the damper force increases, opposing

the action of the input force and dissipating energy at an increasing rate. Thus the action

of the damper is to reduce the acceleration of the mass resulting from the input force.

If the input force is then removed, the damper force continues to oppose the motion of

the mass until it comes to rest, having lost all of its kinetic energy by dissipation in the

damper.

SOLUTION

Newton’s second law applied to the mass m yields

Fi − Fb = m
dv1

dt
. (2.25)

The elemental equation for the damper is

Fb = b(v1 − v2). (2.26)

Equations (2.25) and (2.26) constitute a necessary and sufficient set of two equations

containing the two unknowns Fb and v1(v2 is zero here).

Combining Eqs. (2.25) and (2.26) to eliminate Fb gives

m
dv1

dt
+ b(v1 − v2) = Fi . (2.27)

Because the bearing block is rigidly connected to ground, v2 = 0, leaving

m
dv1

dt
+ bv1 = Fi . (2.28)

Again, this is a simple first-order system, requiring only one state variable, v1, for describ-

ing its state as a function of time.

EXAMPLE 2.5

This system, typical of spring-suspended mass systems, is shown in Fig. 2.11. The object

is to develop the mathematical model relating displacement of the mass x1 to the input

force Fi . Expressed verbally, the system responds to the input in the following fashion.

First, the velocity of the mass increases, accompanied by an increase in its stored kinetic

energy, while the rate of energy dissipated in the damper increases. Meanwhile, the motion

results in a displacement x1, which is the time integral of its velocity, so that the spring

is compressed, accompanied by an increase in its stored potential energy. If the damping

coefficient is small enough, the spring will cause a rebounding action, transferring some

of its potential energy back into kinetic energy of the mass on a cyclic basis; in this case

the decaying oscillation associated with a lightly damped second-order system will occur,

even after the input force has been removed.

SOLUTION

Newton’s second law applied to m – i.e., the elemental equation for m – yields

Fi + mg − Fk − Fb = m
dv1

dt
. (2.29)

2.2. Translational Mechanical Systems 27

Figure 2.11. Diagrams for mass-spring-damper system in a gravity field.

The elemental equations for the damper and the spring are

Fb = bv1, (2.30)

Fk = k(x1 + �1), (2.31)

where �1 is the displacement of the spring that is due to gravity force mg, and x1 is the

displacement that is due to force Fi . In other words, as illustrated in Fig. 2.11(b), �1 is the

spring’s displacement caused by gravity and measured from the position where the spring

is fully relaxed (r), whereas x1 is the displacement caused by the external input force and

measured from the static equilibrium position (se), at which the spring is deflected by

the gravity force but no external force is acting, Fi = 0. It is therefore implied that when

Fi = 0, then x1 = 0 and v1 = 0, and under these conditions Eq. (2.29) yields

mg − k�1 = 0. (2.32)

Substituting back into Eq. (2.29) eliminates the gravity term:

Fi − kx1 − bv1 = m
dv1

dt
. (2.33)

28 Mechanical Systems

Hence the resulting mathematical model for the system is

m
d2x1

dt2
+ b

dx1

dt
+ kx1 = Fi . (2.34)

Note that, in the final model equation, displacement x1 is measured from the static equi-

librium (se) position and the gravity term does not appear in the equation. The gravity

term, mg, has been canceled by a portion of the spring force, k�1. The cancellation of

the gravity term by a portion of the spring force can be performed only if the spring is

linear. If the spring is nonlinear, Fk = fNL(�1 + x1), the displacement must be measured

from the spring-relaxed (r) position and the gravity term cannot be eliminated from the

equation.

The mathematical solution of Eq. (2.34) for specific forcing functions is carried out

in Chap. 4.

This second-order system contains two independent energy-storage elements, and it

requires a set of two state variables (e.g., x1 and dx1/dt, or v1 and Fk, or some other pair)

to describe its state as a function of time.

Equation (2.34), a second-order differential equation, expresses in a very succinct

way the action described earlier in a paragraph of many words. Moreover, it is a more

precise description, capable of providing a detailed picture of the system responses

to various inputs.

EXAMPLE 2.6

The six-element system shown in Fig. 2.12 is a simplified representation of a vibrating

spring–mass assembly (k1, m1, b1) with an attached vibration absorber, subjected to a

displacement input x1, as shown. The object is to develop a mathematical model capable

of relating the motions x2 and x3 to the input displacement x1.

Also presented in Fig. 2.12 are diagrams showing the system in an active displaced

state and “broken open” for free-body representation.

SOLUTION

The elemental equation for the spring k1 in derivative form is

dFk1

dt
= k1(v1 − v2). (2.35)

Integration of Equation (2.35) with respect to time with x1 and x2, both zero in the relaxed

state, yields

Fk1 = k1(x1 − x2). (2.36)

For the mass m1,

Fk1 − Fk2 − Fb1 = m1
d2x2

dt2
. (2.37)

For the damper b1,

Fb1 = b1v2. (2.38)

For the spring k2,

Fk2 = k2(x2 − x3). (2.39)

2.2. Translational Mechanical Systems 29

Figure 2.12. Six-element system responding to a displacement input. NLD, nonlinear damper.

For the mass m2,

Fk2 − FNLD = m2
d2x3

dt2
, (2.40)

and for the nonlinear damper (NLD),

FNLD = fNL(v3) = fNL

(
dx3

dt

)

. (2.41)

Equations (2.36)–(2.39) may now be combined, yielding

m1
d2x2

dt2
+ b1

dx2

dt
+ (k1 + k2)x2 = k1x1 + k2x3, (2.42)

and Eqs. (2.39)–(2.41) are combined to yield

m2
d2x3

dt2
+ fNL

(
dx3

dt

)

+ k2x3 = k2x2. (2.43)

It can be seen that two second-order differential equations are needed to model this

fourth-order system (four independent energy-storage elements), one of which is non-

linear. The nonlinear damping term in Eq. (2.43) complicates the algebraic combination

of Eqs. (2.42) and (2.43) into a single fourth-order differential equation model. In some

cases the NLD characteristic may be linearized, making it possible to combine Eqs. (2.42)

30 Mechanical Systems

and (2.43) into a single fourth-order differential equation for x2 or x3. Because this system

has four independent energy-storage elements, a set of four state variables is required

for describing the state of this system (e.g., x2, v2, x3, and v3, or Fk1, v2, Fk2, and v3). The

exchange of energy among the input source and the two springs and two masses, together

with the energy dissipated by the dampers, would require a very long and complicated

verbal description. Thus the mathematical model is a very compact, concise description

of the system. Further discussion of the manipulation and solution of this mathematical

model is deferred to later chapters.

2.3 ROTATIONAL–MECHANICAL SYSTEMS

Corresponding respectively to the translational elements mass, spring, and damping

are rotational inertia, rotational spring, and rotational damping. These rotational

elements are used in the modeling of systems in which each element rotates about a

single nonaccelerating axis.

2.3.1 Rotational Inertias

An ideal inertia, depicted schematically in free-body diagram form in Fig. 2.13, moves

in relation to a nonaccelerating rotational frame of reference, which is usually taken

to be the earth (ground). However, the frame of a steadily rotating space vehicle, for

instance, could be used as a reference.

The elemental equation for an ideal inertia J, based on Newton’s second law for

rotational motion, is

TJ = J
d�1

dt
, (2.44)

where �1 is the angular velocity of the inertia relative to the ground reference and

TJ is the sum of all the external torques (twisting moments) applied to the inertia.

Because �1 = d�1/dt , the variation of � is related to TJ by

J
d2�1

dt2
= TJ . (2.45)

The kinetic energy stored in an ideal rotational inertia is

�k =
(

J

2

)

�2
1.

Figure 2.13. Free-body diagram of am ideal
rotational inertia.

2.3. Rotational–Mechanical Systems 31

Hence it is designated as an A-type element, storing energy as a function of the

square of its A variable �1.

The response of an inertia to an applied torque TJ is analogous to the response

of a mass to an applied force Fm. It takes time for angular velocity, kinetic energy,

and angular displacement to accumulate after the application of a finite torque, and

it would not be realistic to try to impose a sudden change in angular velocity on a

rotational inertia.

2.3.2 Rotational Springs

A rotating shaft may be modeled as an ideal spring if the torque required for accel-

erating its rotational inertia is negligible compared with the torque that it transmits.

Sometimes, however, the torque transmitted by the shaft is small compared with that

required for accelerating its own inertia so that it should be modeled as an inertia;

and sometimes a combination of springs and inertias may be required for modeling

a real shaft, as illustrated in Section 2.1 for a translational spring.

An ideal rotational spring stores potential energy as it is twisted (i.e., wound

up) by the action of equal but opposite torques, as shown in Fig. 2.14. Here the

rotational spring is shown in a relaxed state [Fig. 2.14(a)], with no torques acting, and

while transmitting torque TK [Fig. 2.14(b)], with both ends displaced rotationally

from their local references r1 and r2, with TK shown acting at both ends in free-body

diagram form.

The elemental equation for a rotational spring is similar to Hooke’s law for a

translational spring, given by

TK = K(�1 − �2), (2.46)

where �1 and �1 are the angular displacements of the ends from their local references

r1 and r2 In derivative form, this equation becomes

dTK

dt
= K(�1 − �2), (2.47)

Figure 2.14. Schematic and free-body diagrams of an ideal spring.

32 Mechanical Systems

where �1 and �2 are the angular velocities of the ends. In each case, the sign con-

vention used for motion is clockwise positive when viewed from the left, and the sign

convention for torque is clockwise positive when acting from the left (with the head

of the torque vector toward the left end of the spring). The potential energy stored

in a rotational spring is given by

�p =
1

2K
T2

K. (2.48)

Hence it is designated as a T-type element, storing energy as a function of the square

of its T variable, TK.

The comments about the response of a translational spring to a step change in

velocity difference between its ends apply equally well to the response of a rotational

spring to a step change in angular velocity difference between its ends. Thus it would

be unreasonable to try to impose a step change of torque in a rotational spring

because that would represent an attempt to change suddenly the energy stored in it

in a real world that does not contain sources of infinite power.

When a rotational spring is nonlinear, it does not have truly constant stiffness K,

and it is advisable to use a nonlinear symbol designation and a nonlinear function to

describe it:

TNLS = fNL(�1 − �2).

Linearization to achieve a local incremental stiffness Kinc is often feasible, as in

the previously discussed case of a nonlinear translational spring.

2.3.3 Rotational Dampers

Just as friction between moving parts of a translational system gives rise to transla-

tional damping, friction between rotating parts in a rotational system is the source of

rotational damping. When the interfaces are well lubricated, the friction is a result

of the shearing of a thin film of viscous fluid, yielding a constant damping coefficient

B, as shown in Fig. 2.15, which uses a cross-sectioned diagram with no torque being

transmitted so that �1 = �2 = � [Fig. 2.15(a)] and a free-body diagram with torque

being transmitted [Fig. 2.15(b)].

The elemental equation of an ideal damper is given by

TB = B(�1 − �2), (2.49)

where TB is the torque transmitted by the damper.

Figure 2.15. (a) Cross-sectioned and (b) free-body diagrams of an ideal rotational damper.

2.3. Rotational Mechanical Systems 33

Figure 2.16. Schematic diagram of a simplified model of a ship propulsion system.

A rotational damper is designated as a D-type element because it dissipates

energy.

When the lubrication is imperfect, so that direct contact occurs between two

parts of the damper, dry friction becomes evident and the damping effect cannot be

described by means of a simple damping constant. Also, in some cases, the interaction

between the two parts of the damper involves hydrodynamic fluid motion, as in the

fluid coupling considered in the following example, in which a square-law nonlinear

function is involved the elemental equation for a NLD. A NLD is expressed in

nonlinear form as

TNLD = fNL(�1, �2). (2.50)

EXAMPLE 2.7

The power transmission system from a diesel engine to a propeller for a ship is shown in

simplified form in Fig. 2.16. The role of the fluid coupling is to transmit the main flow of

power from the engine to the propeller shaft without allowing excessive vibration, which

would otherwise be caused by the pulsations of engine torque resulting from the cyclic

firing of its cylinders. The object here is to develop a mathematical model for this system

in order to relate the shaft torque TK to the inputs Te and Tw.

SOLUTION

The complete set of free-body diagrams for this system is shown in Fig. 2.17. We develop

the system analysis by beginning at the left-hand end and writing the describing equation

for each element and any necessary connecting point equations until the system has been

completely described.

For the engine (moving parts and flywheel lumped together into an ideal inertia in

which friction is ignored),

d�1

dt
=

(
1

Je

)

(Te − Tc). (2.51)

Figure 2.17. Complete set of free-body diagrams for a ship propulsion system.

34 Mechanical Systems

For the fluid coupling (negligible inertia),

Tc = Cc

(

�2
1 − �2

2

)

. (2.52)

At the junction between the fluid coupling and the driveshaft,

Tc = TK. (2.53)

For the driveshaft (ideal rotational spring – negligible friction and inertia),

dTK

dt
= K(�2 − �3). (2.54)

For the propeller (ideal inertia – negligible friction),

d�3

dt
=

(
1

JP

)

(Tk − Tw). (2.55)

Equations (2.51)–(2.55) constitute a necessary and sufficient set of five equations for this

system containing five unknowns: �1, �2, Tc, TK, and �3.

Note that additional dampers to ground at points (1), (2), and (3) would be required

if bearing friction at these points were not negligible. Rearranging Eq. (2.52) into the

form �2 = f2(Tc, �1) yields

�2
2 = �2

1 −
Tc

Cc

(2.52a)

or

�2 = SSR

(

�2
1 −

Tc

Cc

)

, (2.52b)

where SSR denotes “signed square root,” e.g.,

SSR(X) =
X

√
|X|

.

Combining Eqs. (2.51) and (2.53), we have

d�1

dt
=

(
1

Je

)

(Te − Tk); (2.56)

and combining Eqs. (2.52b), (2.53), and (2.54) yields

dTK

dt
= K

[

SSR

(

�2
1 −

TK

Cc

)

− �3

]

. (2.57)

Equations (2.55), (2.56), and (2.57) constitute a necessary and sufficient set of equa-

tions for this system, containing the three unknown variables �3, TK, and �1. Because of

the nonlinearity in the fluid coupling, it is not possible to combine these equations alge-

braically into a single input–output differential equation. However, in their present form

they are a complete set of state-variable equations ready to be integrated numerically on

a computer (see Chap. 5).

2.4 LINEARIZATION

It should be emphasized that the arbitrary classifications presented in Table 1.1 and

the ideal elements listed in Table 1.2 are used only as aids in system modeling. Real

2.4. Linearization 35

Figure 2.18. Schematic of a LVDT.

systems usually exhibit nonideal characteristics and/or combinations of character-

istics that depart somewhat from the ideal models used here. However, analysis of

a system represented by nonlinear, partial differential equations with time-varying

coefficients is extremely difficult and requires extraordinary computational resources

to perform complex, iterative solution procedures, an effort that can rarely be justi-

fied by the purpose of the analysis. Naturally, therefore, simplified descriptions of the

actual system behavior are used whenever possible. In particular, nonlinear system

characteristics are approximated by linear models for which many powerful methods

of analysis and design, involving noniterative solution procedures, are available.

Consider for example a linear variable differential transformer (LVDT), which

is commonly used to measure displacement in high-performance applications. A

simplified schematic diagram of a LVDT is show in Fig. 2.18. In this simple device,

a ferromagnetic core is placed inside three coils. The center coil is energized by

an external ac power source, and the two end coils pick up the voltage induced by a

magnetic field established by the center excitation coil. When the core is in the center

of the coils, the amplitudes of the voltages induced in the end coils are the same and

because the end coils are connected in opposite phase, the output voltage is zero.

When the core is displaced left or right from the center position, the voltage induced

in one of the end coils becomes greater and the resulting output voltage is not zero.

Figure 2.19 shows the nonlinear relationship between the amplitude of the output

voltage and the displacement of the core relative to its center position. It is somewhat

ironic that the word “linear” appears in the name of this inherently nonlinear system,

but it is justified by the fact that the range of measured displacements is usually limited

to a relatively small vicinity of the core’s center position, where the relationship

between output voltage and the core’s displacement is approximately linear (the

smaller the displacement, the better the approximation).

The nonlinear performance characteristic of a LVDT requires that the opera-

tional range of the device be restricted and is thus an unwelcome feature. Although

nonlinearities are often unwelcome because they make the system analysis and design

more difficult or because they limit the system’s applications, there are also many

systems in which nonlinear characteristics are desired and sometimes even necessary.

36 Mechanical Systems

Figure 2.19. Output voltage vs. core dis-
placement characteristic for a LVDT.

One example of a device that is designed to be nonlinear is a fuel gauge in an auto-

mobile. A typical characteristic of the gauge’s needle position versus the amount of

fuel remaining in a 16-gal tank is shown in Fig. 2.20. This characteristic is distinctly

nonlinear near the needle positions indicating that the fuel tank is empty (E) and

full (F). Both nonlinearities are deliberately introduced to benefit both the driver

and the manufacturer of the vehicle. The needle reaches the “E” position when there

is still a considerable amount (usually around 2 gal) of fuel in the tank. The main

reason is to protect the driver from running out of fuel. Another reason is to protect

a fuel-injected engine that requires certain minimum fuel pressure to keep running.

On the other end of the scale, after the tank is filled, the needle stays at the “F”

position while the vehicle is driven for a while. The fuel gauge is designed to behave

that way because it makes an impression of better fuel economy and satisfies most

drivers’ expectations of being able to drive a while on a full tank. In summary, a fuel

gauge is designed to be nonlinear, and most drivers prefer this.

In general, one of the following three options is usually taken in analysis of a

nonlinear system:

(a) replacing nonlinear elements with “roughly equivalent” linear elements,

(b) developing and solving a nonlinear model,

(c) linearizing the system equations for small perturbations.

Use of option (a) often leads to invalid models, to say the least. Approach (b)

leads to the most accurate results, but the cost involved in nonlinear model analysis

may be excessively high, often not justified by the benefits of a very accurate solution.

Figure 2.20. Nonlinear characteristic of a typ-
ical automotive fuel gauge.

2.4. Linearization 37

FNLS = fNL(x)

x
Figure 2.21. NLS characteristic.

Finally, option (c) represents the most rational approach, especially in the preliminary

stages of system analysis. Thus option (c) is now discussed in considerable detail.

Consider a nonlinear spring (NLS) characterized by a relationship, FNLS =
fNL(x), describing a force exerted by the spring, FNLS, when subjected to a change in

length, x, as shown in Fig. 2.21. The value of x is considered to be the extension of the

spring from its relaxed length xr when no external forces are applied, as illustrated

in Fig. 2.22. The purpose of linearization is to replace a nonlinear characteristic with

a linear approximation. In other words, linearizing the nonlinear function fNL(x)

means replacing it locally with an approximating straight line. Such a formulation of

the linearization process is not precise and may yield inaccurate results unless restric-

tions are placed on its use. In particular, a limit must be somehow established for the

small variation x̂ of the whole variable x = x + x̂ from its normal operating-point

value x. This limit on the range of acceptable variation of the independent variable

x is influenced by the shape of the nonlinear function curve and the location of the

normal operating point on the curve. (In the case of two independent variables, of

course, a surface would assume the role of the curve.)

The term “normal operating point” here refers to the condition of a system when

it is in a state of equilibrium with the input variables constant and equal to their mean

values averaged over time. The variations of the inputs to the system containing the

nonlinear element from these mean values must be small enough collectively for

the linearization error to be acceptable. In this case, the maximum variation of x

resulting from all the system inputs acting simultaneously must be small enough so

that the maximum resulting variation of the force FNLS is adequately described by the

straight-line approximation. At the normal operating point for the NLS, the normal

FNLS

NLS (1)

(r)

Spring

relaxed

position

(g)

xr x

Figure 2.22. Elongation of spring subjected to
force FNLS.

38 Mechanical Systems

operating-point force FNLS is related to the normal operating-point displacement x

by

FNLS = fNL(x). (2.58)

As variations from these normal operating-point values occur,

x = x + x̂, FNLS = FNLS + F̂NLS,

FNLS = fNL(x + x̂) = f NL + f̂ NL, (2.59)

where f NL, the normal operating value of fNL, is the first term of the Taylor’s series

expansion of a function near its operating point:

fNL(x + x̂) = fNL(x) + x̂
d fNL(x)

dx

∣
∣
∣
∣
x

+
x̂2

2!

d2 fNL(x)

dx2

∣
∣
∣
∣
x

+
x̂3

3!

d3 fNL(x)

dx3

∣
∣
∣
∣
x

+ · · · + .

Hence, based on Eq. (2.59) and the preceding Taylor’s series expansion,

f NL = fNL(x), (2.60)

and the incremental or “hat” value f̂ NL would represent the remaining terms of the

Taylor’s series expansion:

f̂ NL = x̂
d fNL

dx

∣
∣
∣
∣
x

+
x̂2

2!

d2 fNL

dx2

∣
∣
∣
∣
x

+ · · · + .
(2.61)

However, imposition of the conditions discussed earlier, which justify lineariza-

tion, makes it possible to neglect the terms involving higher powers of x̂ in Eq. (2.61).

Thus linearization for small perturbations of x about the normal operating point uses

the following approximation of f̂ NL:

x̂
d fNL

dx

∣
∣
∣
∣
x

≈ f̂ NL (2.62)

Hence the NLS force FNLS may be approximated adequately in a small vicinity

of the normal operating point where x = x by

FNLS ≈ fNL(x) + x̂
d fNL

dx

∣
∣
∣
∣
x

, (2.63)

where

fNL(x) = FNLS, x̂
d fNL

dx

∣
∣
∣
∣
x

∼= F̂NLS.

The linearized equation for the NLS is represented by a new incremental coor-

dinate system having its origin at the normal operating point (x, FNLS), as shown in

2.4. Linearization 39

Normal

operating

point

FNLS = fNL(x) F̂NLS = fNL(x̂)

Linearized model

Nonlinear

model

α

x̂

x
x

FNLS

Figure 2.23. Incremental coordinate sys-
tem.

Fig. 2.23. The linearized spring characteristic is represented by the diagonal straight

line passing through the new origin with a slope having angle �. The slope itself is

tan �, which is often referred to as the local incremental spring constant kinc, where

kinc = tan � =
dFNLS

dx

∣
∣
∣
∣
x

=
dfNL

dx

∣
∣
∣
∣
x

. (2.64)

The approximating linear formula can now be written in the simple form

FNLS = FNLS + F̂NLS ≈ F̂NLS + kinc x̂. (2.65)

A similar procedure may be applied to a nonlinear element described by a func-

tion of two variables. Consider the example of a hydrokinetic type of fluid coupling

(rotational damper) such as that shown in Fig. 2.24.

In this case the fluid coupling torque Tfc is a nonlinear function of two variables

fNL(�1, �2) that have a Taylor’s series expansion of the following form:

fNL[(�1 + �̂1), (�2 + �̂2)] = fNL(�1, �2)

+ �̂1
∂ fNL

∂�1

∣
∣
∣
∣
�1,�2

+ �̂2
∂ fNL

∂�2

∣
∣
∣
∣
�1,�2

+
�̂2

1

2!

∂2 fNL

∂�2
1

∣
∣
∣
∣

�1,�2

+
�̂2

2

2!

∂2 fNL

∂�2
2

∣
∣
∣
∣

�1,�2

+ · · · + . (2.66)

Neglecting Taylor’s series terms involving higher powers of �̂1 and �̂2 yields

fNL = CT(�2
1 − �2

2) ≈ f NL + f̂ NL,

Tfc Tfc

Ω1 Ω2

Fluid coupling

Figure 2.24. Fluid coupling described by a
function of two shaft speeds �1 and �2.

40 Mechanical Systems

NONLINEAR

SYSTEM

x1 y1

y2

yp

x2

xl

LINEARIZED

SYSTEM

x1 ŷ1

ŷ2

ŷp

x2

xl

ˆ

ˆ

ˆ

Figure 2.25. Graphical illustration of the linearization process.

where3

f NL = CT(�
2

1 − �
2

2),

f̂ NL = 2CT(�1�̂1 − �2�̂2).

Thus we may write

Tf c ≈ f NL + f̂ NL

≈ CT(�
2

1 − �
2

2) + 2CT(�1�̂1 − �2�̂2). (2.67)

The process of linearization can also be thought of as a transformation of a non-

linear system defined in terms of original input and output variables, x1, x2, . . . , xl

and y1, y2, . . . , yp into a linearized model defined in terms of incremental input and

output variables, x̂1, x̂2, . . . , x̂l and ŷ1, ŷ2, . . . , ŷ
p

representing small deviations of the

original variables from their respective normal operating point values. This transfor-

mation is illustrated graphically in Fig. 2.25.

In general, the incremental variables are defined as

x̂i = xi − xi for i = 1, 2, . . . , l,

ŷj = yj − y j for j = 1, 2, . . . , p.

Simplification of a system model obtained as a result of linearization is certainly a

benefit, but – as is usually the case with benefits – it does not come free. The price that

must be paid in this case represents the error involved in approximating the actual

nonlinear characteristics by linear models, which can be called a linearization error.

The magnitude of this error depends primarily on the particular type of nonlinearity

being linearized and on the amplitudes of deviations from a normal operating point

experienced by the system. The effects of these two factors are illustrated in Fig.

2.26. In both parts of the figure, the same nonlinear function, representing combined

viscous and dry friction forces, is linearized. However, because different normal oper-

ating points are selected, different types of nonlinearities are locally approximated

by the dashed lines. In Fig. 2.26(a), the normal operating value of the velocity v is

very close to zero, where a very large discontinuity in the nonlinear function occurs.

3 Instead of using the Taylor’s series expansion, another approach here would be simply to multiply the

whole variables and drop terms that are second-order small. In other words,

fNL = CT[(�1 + �̂1)2 − (�2 + �̂2)2]

= CT

[(

�
2
1 + 2�1�̂1 + �̂2

2

)

−
(

�
2
2 + 2�2�̂2 + �̂2

2

)]

= CT

(

�
2
1 − �

2
2

)

+ 2CT(�1�̂1 − �2�̂2).

2.4. Linearization 41

FNLD = fNL(v) FNLD = fNL()

Linearization

error

Linearization

error

(a) (b)

vv

v

v̂

ˆ

v
−

v

F̂ NLD

F̂ NLD

v

Figure 2.26. Effect of the type of nonlinearity on linearization error.

In this case, a sudden change in the force FNLD occurs at the dry-friction discontinuity

when the system deviates only a small amount from its normal operating state. On the

other hand, if the normal operating point is far away from the discontinuity at zero

velocity, as in the case shown in Fig. 2.26(b), the error resulting from linearization is

reasonably small if the magnitude of the change in v is small.

A complete linearization procedure can be performed in the following five steps:

Step 1. Derive the nonlinear model.

Step 2. Determine the normal operating point.

Step 3. Introduce incremental variables.

Step 4. Linearize all nonlinear terms by use of Taylor’s series expansion.

Step 5. Arrange the linearized equation into a final form.

This five-step procedure is applied in the following example.

EXAMPLE 2.8

In the mechanical system shown in Fig. 2.27, the relationship between the force exerted

by the spring and the change of the spring’s length measured from the spring’s relaxed

position has been approximated mathematically by the following nonlinear equation:

FNLS = fNL(x) = 2.5
√

x. (2.68)

NLS
m

x

(r)

b

Figure 2.27. Schematic diagram of the system considered in
Example 2.8.

42 Mechanical Systems

Obtain a linearized mathematical model of the system that approximates the system

dynamics in a small vicinity of the normal operating point determined by the average

value of the input force, F i = 0.1 N.

SOLUTION

This problem is solved following the five-step linearization process introduced earler in

this section.

Step 1. The mathematical model of the system is a second-order nonlinear dif-

ferential equation:

mẍ + bẋ + fNL(x) = Fi , (2.69)

mẍ + bẋ + 2.5
√

x = Fi . (2.70)

Step 2. The normal operating point is defined by the given constant input force

F i = 0.1 N and by the corresponding displacement x. One can find the

unknown value of x from model equation (2.70) by setting Fi = F i and

x = x, which yields

mẍ + bẋ + 2.5
√

x = F i . (2.71)

The first two terms of Eq. (2.71) drop out because x is, by definition,

a constant, and does not vary with time. Hence

2.5
√

x = F i , (2.72)

x =
(

0.1

2.5

)2

= 0.0016 m. (2.73)

Thus the normal operating point corresponding to the constant portion

of the input force of 0.1 N is a deflection of 0.0016 m.

Step 3. Introduce the incremental variables by substituting x = x + x̂ and Fi =
F i + F̂i into Eq. (2.71):

m ¨̂x + b ˙̂x + fNL (x + x̂) = F i + F̂i . (2.74)

Step 4. The nonlinear term in Eq. (2.74) is approximated by the first two terms

of the Taylor’s series expansion:

fNL(x + x̂) ≈ 2.5
√

x +
(

2.5

2
√

x

)

x̂ = 0.1 + 31.25x̂. (2.75)

Step 5. Substitute the linear approximation in Eq. (2.75) into (2.74) to get the

following result:

m ¨̂x + b ˙̂x + 0.1 + 31.25x̂ = F i + F̂i . (2.76)

2.4. Linearization 43

Note that the constant portion of the input force appears on both sides of Eq.

(2.76) and therefore cancels out, leaving a linear second-order ordinary differential

equation (ODE):

m ¨̂x + b ˙̂x + 31.25x̂ = F̂ i . (2.77)

Note that the coefficient of the incremental displacement term occupies the position

where one normally finds a spring constant. In point of fact, this is the incremental

stiffness kinc of the NLS in the vicinity near the normal operating position established

by the force F i = 0.1 N:

m ¨̂x + b ˙̂x + kinc x̂ = F̂ i . (2.78)

where

kinc = 31.25 N/m. (2.79)

To further illustrate this important concept, both the linearized and nonlinear spring

characteristics can be plotted by use of MATLAB. Appendix 3 is a tutorial on the

MATLAB environment, and readers not well versed in its usage are encouraged to

review the tutorial before proceeding with the book material.

The nonlinear function to be plotted is given by Eq. (2.68). The linearized model

of the spring is represented by a straight line tangent to the nonlinear function at

the normal operating point (x = 0.0016 m). The slope of the straight line is the incre-

mental stiffness, 31.25 N/m and its y intercept is 0.05 N, which can be found by

substitution of the coordinates of the normal operating point into a general equation

for the tangent line. Thus the approximated linearized spring force equation is

FNLS ≈ 31.25x + 0.05. (2.80)

The following MATLAB commands can be used to generate the plots:

>> x = [0.0:0.0001:0.01]; % set up a vector of x values

>> Fnls = 2.5*xˆ0.5; % compute NLS force

>> Flins = 31.25*x+0.05; % compute linearized spring force

>> plot (x, Fnls, x, Flins) % plot both force against deflection

>> xlabel(‘Deflection (m)’) % add x and y labels and grid to plot

>> ylabel(‘Force (N)’)

>> grid

The plot is shown in Fig. (2.28). The main outcome of the linearization process

performed in Example 2.8 was the incremental stiffness of the spring (kinc), which is

equal to the slope of the line that is tangent to the nonlinear function at the normal

operating point of interest. Some interesting observations can be made from the plot.

First, it can be seen that the slope of the tangent line (and the incremental stiffness)

will vary a great deal, depending on the location of the normal operating point, from

a very large positive number near the point of zero deflection (approaching infinity)

to a more modest value of 31.25 N/m at a deflection of 0.0016 m. Second, it is quite

clear that the linearization error, or the difference in the vertical direction between

the nonlinear function and the tangent line, will increase as the spring deflection

deviates from the normal operating point. Finally, it can also be observed that the

44 Mechanical Systems

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Deflection(m)

F
o
rc

e
 (

N
)

Normal Operating Point

Nonlinear model

Linearized model

Figure 2.28. MATLAB-generated plot of NLS and linearized spring characteristics considered in
Example 2.8.

linear approximation is better as the normal operating point moves farther away

from the spring-relaxed position, x = 0.

In summary, although linearized models should be used whenever possible

(because they lend themselves to powerful analytical methods), it should be kept

in mind that they constitute local (usually for small deviations from a nominal oper-

ating point) approximations of the nonlinear system and that the results obtained

with linearized models provide a simplified picture of the actual system behavior.

2.5 SYNOPSIS

This chapter demonstrated the principles involved in developing simplified lumped-

parameter mathematical models of mechanical systems of two basic types: (a) trans-

lational systems and (b) rotational systems. In each case, the system model was

developed through the use of Newton’s laws dealing with summation of forces at

a massless point (or torques at an inertialess point) and acceleration of a lumped

mass (or lumped inertia), together with elemental equations for springs, dampers,

or both. When carried out properly, this results in a set of n equations containing n

unknown variables. Subsequent mathematical manipulation of these equations was

carried out to eliminate unwanted variables, producing the desired model involving

the variables of greatest interest.

Usually, this desired model consisted of a single input–output differential equa-

tion relating a desired output to one or more given inputs. In some cases, a reduced

set of first-order equations, called state-variable equations, was developed as part

of the process of eliminating unwanted variables. This was done because, in some

instances in the future, this is all the reduction needed to proceed with a com-

puter simulation or analysis of the system. The definition of state variables is left to

Problem 2.1 45

Chap. 3, which covers the topic of this aspect of system modeling in considerable

detail.

The energy converters required for coupling translational with rotational systems

are discussed in Chap. 10, in which the general topic of energy converters in “mixed”

systems is covered in some detail.

During the development of this chapter, the basic system elements were classi-

fied as to their energy-storage or energy-dissipation traits. Furthermore, in the case

of energy-storage elements, precautions were emphasized relative to the impossi-

bility of storing a finite amount of energy in an energy-storage element with finite

sources of force (or torque) and velocity in zero time. Knowledge of these limita-

tions on energy storage establishes limits on the kinds of sudden changes of input that

are physically realizable when only finite sources of force (or torque) and velocity

are available. Knowledge of these limitations on energy storage is also essential to

the determination of the initial conditions of a system (in other words, the values of

the system’s variables) after a sudden change of a system input occurs.

Finally, examples of nonlinear elements were introduced. Methods of lineariza-

tion for small perturbations about a given operating point were demonstrated, and

limitations on the use of this linearization were discussed. The underlying motiva-

tion of simplification to augment mathematical analysis was balanced against the

limitations imposed by linear approximation for a sufficiently small region near the

selected normal operating point.

PROBLEMS

2.1 A rather heavy compression spring weighing 1.0 lb has a stiffness ks of 2000 lb/in. To

the casual observer it looks like a spring but “feels” like a mass. This problem deals with

the choice of a suitable lumped-parameter model for such a spring.

According to vibration theory, this spring, containing both mass and stiffness itself,

will respond with different kinds of oscillations, depending on how it is forced (i.e., its

boundary conditions).4 This means that the choice of an approximate lumped-parameter

model for this element will depend partly on the elements with which it interacts and

partly on the range of frequencies, or rate of variation, of inputs applied to the system

containing it. Obviously, in a simple system containing this heavy spring and an attached

mass, the spring may be modeled to a good degree of approximation as a pure spring

if the attached mass is at least an order of magnitude greater than the self-mass of the

spring and if the portion of the force applied to the spring required for accelerating its

self-mass is small compared with the force required for deflecting the spring. Likewise,

the spring might be approximately modeled as a pure mass if it interacts with another

spring having a stiffness at least an order of magnitude smaller than its own stiffness and

if its self-deflection is small compared with the deflection of the other spring as a result

of the acceleration force of its mass.

You are asked to propose approximate lumped-parameter models for such a spring

in the following situations.

(a) The heavy spring supports a mass m weighing 5.0 lb with a force source Fs acting on

the mass, as shown in Fig. P2(a). The maximum frequency of a possible sinusoidal

4 See D. J. Inman, Engineering Vibration, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 2001), pp. 431–75.

46 Mechanical Systems

Figure P2(a).

Figure P2(b).

variation of Fs is about half the lowest natural frequency of the heavy spring itself,

operating in free–free or clamped–clamped mode.5

(b) The spring acts between a mass weighing 3.0 lb and a force source, as shown in Figure

P2(b), with a maximum possible frequency of sinusoidal variation that is about one-

half the lowest natural frequency of the heavy spring itself, operating in free–clamped

mode.6

2.2 An automobile weighing 3000 lb is put in motion on a level highway and then allowed

to coast to rest. Its speed is measured at successive increments of time, as recorded in the

following table:

Time (s) Speed (f t/s, approx.)

0 15.2

10 10.1

20 6.6

30 4.5

40 2.9

50 2.1

60 1.25

(a) Using a mass–damper model for this system, draw the system diagram and set up the

differential equation for the velocity v1 of the vehicle.

(b) Evaluate m and then estimate b by using a graph of the data given in the preceding

table. (Hint: Use the slope dv1 /dt and v1 itself at any time t.)

2.3 An automobile weighing 2200 lb is released on a 5.8◦ slope (i.e., 1/10 rad), and its

speed at successive increments of time is recorded in the following table. Estimate the

5 Ibid.
6 Ibid.

Problems 2.3–2.5 47

effective damping constant b for this system, expressed in Newton seconds per meter (N

s/m). (See hint in Problem 2.2. Also check first for Coulomb friction.)

Time (s) Speed (m/s)

0 0

10 2.05

20 3.30

30 4.15

40 4.85

50 5.20

60 5.55

2.4 An electric motor has been disconnected from its electrical driving circuit and set

up to be driven mechanically by a variable-speed electric hand drill mounted in a simple

dynamometer arrangement. The torque versus speed data given in the following table

were obtained. Then, starting at a high speed, the motor was allowed to coast so that the

speed versus time data given in the table could be taken.

Driven Coasting

Shaft speed Torque Shaft speed

(rpm) (N m) Time (s) (rpm)

100 0.85 0 600

200 1.35 10 395

300 2.10 20 270

400 2.70 30 180

500 3.70 40 110

600 4.50 50 70

– – 60 40

(a) Evaluate the Coulomb friction torque Tc and the linear rotational damping coeffi-

cient B for the electric motor.

(b) Draw a system model for the electric motor and set up the differential equation for

the shaft speed �1 during the coasting interval.

(c) Estimate the rotational inertia J for the rotating parts of the electric motor.

2.5 (a) Draw a complete free-body diagram for all the elements of the system shown in

Fig. P2.5.

(b) When the input force Fi is zero, the displacement x1 is zero, the force in each spring

is Fs, and the system is motionless. Find the spring forces Fk1 and Fk2 and the dis-

placement x1 when the input force is 5.0 lb and the system is again motionless.

(c) Derive the differential equation relating the displacement x1 to the input force F1.

Figure P2.5.

48 Mechanical Systems

(d) Find the initial values of u1 and x1 at = 0+, i.e., u1 (0+) and x1(0+), after the input

force F1 is suddenly reduced to zero from 5.0 lb.

2.6 A metal plate weighing 5.0 kg and measuring 10 cm × 30 cm is suspended by means

of a 30-cm-long, 5.0-mm-diameter steel rod, as shown in Fig. P2.6.

(a) Draw a complete free-body diagram for all the elements of this system and write

the differential equation for the angular displacement �1 of the plate, using a simple

inertia-spring model for the system.

(b) Using your knowledge about vibrations, find the natural frequency of oscillation for

this system model in radians per second.

(c) Comment on the suitability of using this simple model for the system. Take into

consideration that the input torque T1 will never change with sinusoidal variations

that have frequencies exceeding about 1/10 of the lowest clamped–clamped natural

frequency of the suspension rod itself.

Figure P2.6.

2.7 A simplified schematic diagram of a quarter-car model is shown in Fig. 1.2.

(a) Derive the differential equation relating the motion x3 to the road profile motion x1.

(b) Derive the differential equation relating the spring force Fk to the road profile motion

x1.

2.8 The rotational system shown schematically in Fig. P2.8 is an idealized model of a

machine-tool drive system. Although friction in the bearings is considered negligible in

this case, the nonlinear friction effect NLD between the inertia J2 and ground is significant.

It is described by

TNLD = �2

(
T0

|�2|

)

+ C |�2| �2.

(a) Draw the complete free-body diagram for this system, showing each element sepa-

rately and clearly delineating all variables.

(b) Write the necessary and sufficient set of describing equations for this complete

system.

Figure P2.8.

Problems 2.8–2.10 49

(c) Write corresponding equations for small perturbations of all variables for the case

in which �2 is always positive and varies about a mean value �2. Find corresponding

mean values of Ts and �2 in terms of �2

(d) Combine the small-perturbation equations to eliminate unwanted variables and

develop the system differential equation, relating the output �̂2 to the input T̂s(t).

2.9 The system shown schematically in Fig. P2.9 is an idealized model of a cable lift

system for which the springs k1 and k2 represent the compliances of connecting flexible

cables.

(a) Draw a complete free-body diagram for the system, showing each element separately,

including the massless pulley, and clearly delineating all variables.

(b) Develop expressions for �2 and �3, the displaced references resulting from the action

of gravity on the mass m2 when x1 = 0.

Figure P2.9.

(c) Write the necessary and sufficient set of describing equations for this system.

(d) Combine these equations to remove unwanted variables and develop the system

differential equation relating x3 to x1.

2.10 Two masses are connected by springs to a rotating lever, as is shown schematically

in Fig. P2.10.

Figure P2.10.

50 Mechanical Systems

(a) Draw a complete free-body diagram for this system, showing each element, including

the massless lever, and delineating clearly all variables.

(b) Write the necessary and sufficient set of equations describing this system, assuming

that the angle � never changes by more than a few degrees.

(c) Combine equations to remove unwanted variables and obtain the system differential

equation relating x3 to F3(t).

2.11 A nonlinear hydraulic shock absorber using symmetrical orifice-type flow resis-

tances, shown schematically in Fig. P2.11, has the nonlinear force versus velocity charac-

teristic shown in the accompanying graph.

(a) Find the operating-point value FNLD of the force FNLD in terms of v1.

(b) Linearize this characteristic, showing howF̂NLD is related to v̂1 for small variations

of v1 around an operating-point value of v. In other words, find the incremental

damping coefficient binc = FNLD/v̂1.

(c) Suggest what should be used as the approximate equivalent damping coefficient beq

when large periodic variations occur through the large range vR1 about zero velocity,

as shown in the graph.

(d) Suggest what should be used for beq when a large periodic “one-sided” variation, vR2,

of v1 occurs.

v1

vR2

vR1

FNLD

FNLD

Small variations

v1
−

v1

−
FNLD

FNLD = fNL(v1) = C⏐v1⏐v1

Figure P2.11.

2.12 The height y of the liquid in a leaking tank, shown in Fig. P2.12, is mathematically

modeled by the differential equation

dy

dt
= −

by

A0 + ay
+

Qi

A0 + ay
,

where Qi is the input flow rate of liquid and a, b, and A0 are constant parameters.

(a) Find the normal operating-point value y of the liquid height for the input flow rate

Q1 = Q1 = const.

(b) Linearize the liquid height equation in a small vicinity of the normal operating point.

Problems 2.13–2.15 51

A0

y

Qi

Figure P2.12.

2.13 An approximate model of a hydraulic turbine has been derived in the following

form:

Tt = T0 −
T0

6

(

1 −
�1

�0

)2

− T0

(

1 −
�P

P0

)

,

where Tt is the torque generated by the turbine, �1 is the shaft velocity, �P is the hydraulic

pressure, and T0,�0, and P0 are constants. This model is shown graphically in Fig. P10.2(b).

Linearize the torque model for small deviations from a normal operating point deter-

mined by �1 = �1 and �P = �P.

2.14 In an electric circuit shown in Fig. P2.14, resistor R and inductor L are assumed

to be linear but the semiconductor diode behaves like an exponential resistor, whose

current–voltage relationship is approximated by the following equation:

i = I0e�eD.

The mathematical model of the circuit is given by

ei = Ri + L
di

dt
+ eD.

Follow the five-step procedure used in Example 2.8 to linearize the circuit equation in

the vicinity of the normal operating point established by a constant input voltage of ei .

ei
eD

R L

Figure P2.14. Schematic of an RL circuit with a diode.

2.15 Figure P2.15 shows the free-body diagram of a steel ball in a magnetic levitation

apparatus. A large electromagnet is used to suspend the 1-in.-diameter steel ball. The

magnetic force applied to the ball can be expressed as a function of the current through

52 Mechanical Systems

the coil i and the distance of the center of the ball to the base of the magnet x, as

subsequently shown:

Fm = −Ki

i2

x2
.

(a) At equilibrium, the force generated by the coil is equal to the weight of the ball. For

a given steady coil current, i , find the corresponding equilibrium position x.

(b) Linearize this equation for small perturbations about the equilibrium position.

Fm

mg

+
Figure P2.15. Free-body diagram of steel ball in a magnetic field.

2.16 Figure P2.16 shows a schematic of a mechanical drive system in which a servomotor

(inertia J1) drives a pinion gear (inertia J2, radius R) that is meshed with a rack (mass m).

The rack moves laterally against a spring element (k). The linear bearing that guides the

rack is well lubricated and produces a viscous friction effect (b). Assume that the shaft

between the motor (J1) and the gear (J2) is rigid. Develop the input–output differential

equation of motion for this system with Ti as the input and x as the output.

J1

J2

m, b
k

Ti, 1Ω

x

Figure P2.16. Schematic of a rotational–translational mechanical drive system.

2.17 Consider the mechanical system sketched in Fig. P2.17. It represents a motor driving

a heavy inertial load through a belt drive. The belt is flexible and is modeled as a torsional

spring. Also, the friction inherent in the motor is modeled as a linear damping factor

between the motor inertia and the ground. Develop the equation relating the input torque

Ti to the speed of the large inertia �2.

J1

J2

B

K

Ti, 1Ω

Ω 2

Figure P2.17. Schematic of a mechanical drive system with two
rotary inertias and a torsional spring.

Problems 2.18–2.20 53

2.18 Figure P2.18 shows a simple model of a mass, two springs, and a damper. Derive the

differential equation that relates the input force F to the motion of the mass x. The final

differential equation should have only x and F as variables; there should be no extraneous

coordinates in the final equation.

m

k2

k1

b

F

x

(se)

Figure P2.18. Spring–mass–damper system
with two springs.

2.19 For the magnetic levitation problem introduced in Problem 2.15, derive the equation

of motion for the steel ball. Use MATLAB to graph the nonlinear characteristic between

the equilibrium position and the nominal current in the coil. For a nominal position of

15 mm, find the range of motion for which the linearization error is less than 10%. Use

m = 0.068 kg and Ki = 3.2654 × 10−5.

2.20 The mechanical system shown in Fig. P2.20 depicts a model of a packaging system to

protect delicate electronic items during shipping. Derive a differential equation relating

the force Fi to the motion of m2. Assume that all displacements are referenced to the

static equilibrium position of the masses.

f1

m2

b2

k2

k3

b1

k1

m1

Figure P2.20. Schematic representation of a packaging system.

3

Mathematical Models

LEARNING OBJECTIVES FOR THIS CHAPTER

3–1 To derive input–output models of linear mechanical systems.

3–2 To distinguish between input–output and state-space forms of mathematical

models of engineering systems.

3–3 To discuss the concept of a system state and the related concepts of state variable,

state vector, and state space.

3–4 To derive state-space models of linear and nonlinear mechanical systems.

3–5 To recognize advantages and disadvantages of input–output models and state

models and transform input–output models to state-space models and vice versa.

3.1 INTRODUCTION

In almost all areas of engineering, and certainly in all those areas for which new

processes or devices are being developed, considerable efforts are directed toward

acquiring information on various aspects of system performance. This process is

generally referred to as a system analysis. Traditionally, system analysis was carried

out by investigation of the performance of an existing physical object subjected to

selected test input signals. Although there is no doubt that such an experimental

approach provides extremely valuable and most reliable information about system

characteristics, experimenting with an actual full-scale system is not always feasible

and is very often practically impossible, especially in the early stages of the system

analysis. There are several reasons for this. First, an actual system must be available

for testing or a new test object must be constructed, which may involve high cost in

terms of time and money. Second, the extent to which the parameters of an existing

engineering system can be varied in order to observe their effects on system per-

formance is usually very limited. Third, the experimental results are always “object

specific,” because they represent only a particular system under investigation, and

may be difficult to generalize.

To overcome these problems, researchers develop simplified representations of

actual systems, called system models. The system models may be physical in nature

(downscaled actual systems), or they may be developed in the form of abstract

descriptions of the relationships existing among the system variables. In the latter

case, a dynamic system can be described by verbal text, plots and graphs, tables of

relevant numerical data, or mathematical equations. The language of mathematics

54

3.2. Input–Output Models 55

Figure 3.1. Single-input, single-output dynamic system.

is preferred in modeling engineering systems because of its superior precision and

generality of expression. Mathematical methods of system modeling lead to better

ability to generalize the results and to apply them to solving control and design prob-

lems. A representation of the relationships existing among the system variables in

the form of mathematical equations is a mathematical model of the system.

Two types of mathematical models are introduced in this chapter, input–output

models and state models. Both types of models carry essentially the same information

about the system dynamics, but the sets of model differential equations are different

from each other in several respects. These differences carry serious implications for

practical usefulness and applicability of the types of models in various engineering

problems.

3.2 INPUT–OUTPUT MODELS

A basic concept of a dynamic system interacting with its surroundings by means

of input variables and output variables was introduced in Chap. 1. Recall that the

input variables, or simply inputs, originate outside the system and are not directly

dependent on what happens in the system. The output variables, or simply outputs,

are chosen from the set of variables generated by the system as it is subjected to the

input variables. The choice of the outputs is arbitrary, determined by the objectives

of the system analysis.

Consider the single-input, single-output dynamic system shown in Fig. 3.1. In

general, the relationship between the input and output signals of the system can be

represented by an nth-order differential equation of the following form:

f

(

y,
dy

dt
, . . . ,

dn y

dtn
, u,

du

dt
, . . . ,

dmu

dtm
, t

)

= 0, (3.1)

where m ≤ n for existing and realizable engineering systems because of the inherent

inertia of those systems. Also, having m > n is physically impossible because it would

imply the ability to “predict the future” of the system input. A set of n initial condi-

tions, y(0+), y(0+), . . . , y(n−1)(0+), must be known in order to solve the equation for

a given input u(t), t ≥ 0.1

If the system is nonlinear, f is a nonlinear function of its arguments. If the system

is stationary, time t is not an explicit argument of function f and the model differential

equation can then be written as

f

(

y,
dy

dt
, . . . ,

dn y

dtn
, u,

du

dt
, . . . ,

dmu

dtm

)

= 0, (3.2)

where f may be a nonlinear function.

1 To solve a differential equation and find the system response to an input beginning at time t = 0, it is

necessary to have the initial conditions just after the input starts, i.e., at t = 0+. All initial conditions

throughout this book are therefore meant to be taken at t = 0+, unless otherwise stated.

56 Mathematical Models

For a stationary linear model, the function f is a sum of terms that are linear

with respect to the arguments of f, and the model input–output equation can then be

presented in the following form:

an

dn y

dtn
+ an−1

dn−1 y

dtn−1
+ · · · + a1

dy

dt
+ a0 y

= bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · · + b1

du

dt
+ b0u, (3.3)

where a0, a1, . . . , an and b0, b1, . . . , bm are all constants. As before, the order of the

highest derivative of the input variable cannot be greater than the order of the highest

derivative of the output variable, m ≤ n.

Equations (3.1), (3.2), and (3.3) represent general forms of input–output models

for single-input, single-output dynamic systems.

EXAMPLE 3.1

Derive an input–output equation for the system described in Example 2.4 by using force

Fi(t) as the input and velocity v(t) as the output. In this system mass m is supported by

an oil film bearing. The bearing produces a resisting force proportional to the velocity of

the mass. The system is presented schematically in Fig. 3.2.

SOLUTION

The system equation of motion, derived in Example 2.4, is

m
dv1

dt
+ bv1 = Fi

or, rearranged slightly,

m
dv1

dt
+ bv1 − Fi = 0.

By comparing the preceding input–output equations with the general forms of Eqs.

(3.1)–(3.3), it can be observed that this model is stationary (because time does not appear

explicitly as a variable) and linear (the terms involving the first derivative of the output

variable, the output variable itself, and the input variable are combined in a linear fashion).

Completing the comparison between the specific input–output model derived in this

example and the general form for a linear stationary system given by Eq. (3.3), one can

see that n = 1, m = 0, a0 = b, a1 = m, and b0 = 1.

The next three examples, 3.2, 3.3, and 3.4, deal with three variations of a mechan-

ical system that is a little more complex than the system considered in Example 3.1,

although it is still relatively simple. These examples have been chosen to demon-

strate how involved the derivation of input–output models becomes for all except

the simplest low-order, single-input, single-output systems.

Figure 3.2. Mechanical system considered in
Example 3.1.

3.2. Input–Output Models 57

Figure 3.3. Mechanical system considered in
Example 3.2.

EXAMPLE 3.2

Derive input–output equations for the mechanical system shown in Fig. 3.3 by using force

F1(t) as the input variable and displacements x1(t) and x2(t) as the output variables.

The symbols se1 and se2 represent static-equilibrium positions of masses m1 and m2.

SOLUTION

The equation of motion for mass m1 is

m1 ẍ1 + b1 ẋ1 + (k1 + k2)x1 − k2x2 = F1(t).

The equation of motion for mass m2 is

m2 ẍ2 + k2x2 − k2x1 = 0.

It should be noted that, as was demonstrated in Example 2.5, when displacements are

measured from static-equilibrium positions, i.e., from positions taken by the two masses

when the external force F1 acting on the system is zero and the system is linear, the gravity

terms do not appear in the equations of motion.

Combining the equations for the two masses and eliminating x1 yields the input–

output equation for the system:

d4x2

dt4
+

(
b1

m1

)
d3x2

dt3
+

(
k2

m2
+

k1

m1
+

k2

m1

)
d2x2

dt2

+
(

b1k2

m1m2

)
dx2

dt
+

(
k1k2

m1m2

)

x2 =
(

k2

m1m2

)

F1(t).

The preceding fourth-order differential equation can be solved provided the initial condi-

tions, x2(0), (dx2/dt)
∣

∣

t = 0, (d2x2/dt2)
∣

∣

t = 0
, (d3x2/dt3)

∣

∣

t = 0
, and the input variable, F1(t)

for t ≥ 0, are known.

Similarly, the input–output equation relating x1 to F1(t) is

d4x1

dt4
+

(
b1

m1

)
d3x1

dt3
+

(
k2

m2
+

k1

m1
+

k2

m1

)
d2x1

dt2
+

(
b1k2

m1m2

)
dx1

dt

+
(

k1k2

m1m2

)

x1 =
(

1

m1

)
d2 F1

dt2
+

(
k2

m1m2

)

F1(t).

58 Mathematical Models

Figure 3.4. Mechanical system considered in Example 3.3.

The process of deriving the input–output equation in Example 3.2 will become

considerably more complicated if an additional damper b2 is included between the

two masses, as shown in Fig. 3.4.

EXAMPLE 3.3

Derive an input–output equation for the mechanical system shown in Fig. 3.4, using x2 as

the output variable.

SOLUTION

The equations of motion for masses m1 and m2 now take the form

m1
d2x1

dt2
+ (b1 + b2)

dx1

dt
+ (k1 + k2)x1 − b2

dx2

dt
− k2x2 = F1(t),

m2
d2x2

dt2
+ b2

dx2

dt
+ k2x2 − b2

dx1

dt
− k2x1 = 0.

The unwanted variable x1 cannot be eliminated from these equations by use of simple

substitutions as in Example 3.2 because the derivatives of both x1 and x2 are present in

each equation. In such a case, an operator D can be introduced, defined as

Dkx(t) =
dkx(t)

dtk
.

The D operator transforms differential equations into algebraic equations, which are

usually easier to manipulate than the original differential equations.

With the D operator, the differential equations of motion can be rearranged into the

following form:

m1 D2x1 + (b1 + b2)Dx1 + (k1 + k2)x1 − b2 Dx2 − k2x2 = F1(t),

m2 D2x2 + b2 Dx2 + k2x2 − b2 Dx1 − k2x1 = 0.

From the last equation, x1 can be expressed as

x1 =
(

m2 D2 + b2 D + k2

b2 D + k2

)

x2.

3.2. Input–Output Models 59

Substituting into the operator equation for mass m1 yields

m1m2 D4x2 + (m2b1 + m2b2 + m1b2)D3x2 + (m1k2 + m2k1 + m2k2 + b1b2)D2x2

+ (b1k2 + b2k1)Dx2 + k1k2x2 = b2 DF1 + k2 F1.

Using the inverse of the definition of the D operator to transform this equation back

to the time domain gives the input–output equation for the system:

(m1m2)
d4x2

dt4
+ (m2b1 + m2b2 + m1b2)

d3x2

dt3

+ (m1k2 + m2k1 + m2k2 + b1b2)
d2x2

dt2

+ (b1k2 + b2k1)
dx2

dt
+ k1k2x2 = b2

dF1

dt
+ k2 F1.

Example 3.3 demonstrates that inserting a damper between the two masses

makes the process of deriving the input–output equation considerably more compli-

cated. In the next example, a two-input, two-output system is considered. Two sepa-

rate input-output equations, one for each output variable, will have to be derived.

EXAMPLE 3.4

Consider again the mechanical system shown in Fig. 3.3. The system is now subjected

to two external forces, F1(t) and F2(t). The displacements of both masses are of inter-

est, and therefore x1(t) and x2(t) will be the two output variables of this system. The

system is shown in Fig. 3.5. The differential equations of motion for the two masses

are

m1
d2x1

dt2
+ b1

dx1

dt
+ (k1 + k2)x1 − k2x2 = F1,

m2
d2x2

dt2
+ k2x2 − k2x1 = F2.

Figure 3.5. Two-input, two-output system considered in Exam-
ple 3.4.

60 Mathematical Models

Figure 3.6. Multi-input, multi-output system.

When these two equations are combined, the separate input–output equations for

x1(t) and x2(t) are obtained:

m1m2
d4x1

dt4
+ m2b1

d3x1

dt3
+ (m1k2 + m2k1 + m2k2)

d2x1

dt2

+ b1k2
dx1

dt
+ k1k2x1 = m2

d2 F1

dt2
+ k2 F1 + k2 F2,

m1m2
d4x2

dt4
+ m2b1

d3x2

dt3
+ (m1k2 + m2k1 + m2k2)

d2x2

dt2

+ b1k2
dx2

dt
+ k1k2x2 = k2 F1 + m1

d2 F2

dt2
+ b1

dF2

dt
+ (k1 + k2)F2.

Note that the two input–output equations are independent of each other and can be

solved separately. On the other hand, the coefficients of each of the terms on the left-hand

sides are the same, regardless of which system variable is chosen as the output.

In general, a linear system with l inputs and p outputs, shown schematically in

Fig. 3.6, is described by p independent input–output equations:

f1

(

y
(n)
1 , . . . , ẏ1, y1, u

(m)
1 , . . . , u̇1, u1, u

(m)
2 , . . . , u̇2, u2, . . . , u

(m)
l , . . . , u̇l , ul , t

)

= 0,

f2

(

y
(n)
2 , . . . , ẏ2, y2, u

(m)
1 , . . . , u̇1, u1, u

(m)
2 , . . . , u̇2, u2, . . . , u

(m)
l , . . . , u̇l , ul , t

)

= 0
...

fp

(

y(n)
p , . . . , ẏp, yp, u

(m)
1 , . . . , u̇1, u1, u

(m)
2 , . . . , u̇2, u2, . . . , u

(m)
l , . . . , u̇l , ul , t

)

= 0,

(3.4)

where m ≤ n and a superscript enclosed in parentheses denotes the order of a deriva-

tive. If a system is assumed to be stationary, time t does not appear explicitly in

Eqs. (3.4).

If a system is assumed to be linear, the functions f1, f2, . . . , fp are linear com-

binations of terms involving the system inputs, outputs, and their derivatives. The

input–output model for a linear, stationary, multi-input, multi-output system can be

presented in a more compact form:

n
∑

i=0

a1i y
(i)
1 =

l
∑

j=1

m
∑

k=0

b1 jku
(m)
j ,

n
∑

i=0

a2i y
(i)
2 =

l
∑

j=1

m
∑

k=0

b2 jku
(m)
j ,

...
n

∑

i=0

api y(i)
p =

l
∑

j=1

m
∑

k=0

bpjku
(m)
j . (3.5)

3.3. State Models 61

Note that some of the a and b coefficients may be equal to zero; also note that

a1i = a2i = · · · = api , i = 1, 2, . . . , n.

The input–output equations, even for relatively simple multi-input, multi-output

models, become extremely complicated. Moreover, as will be shown in Chap. 4, ana-

lytical methods for solving input–output equations are practical only for low-order,

single-input, single-output models. In fact, most numerical methods for solving high-

order differential equations, such as input–output equations, require that those equa-

tions be replaced with an equivalent set of first-order equations, which is the stan-

dard form of state equations. Also, many quite powerful concepts and methodologies

based on input–output models, such as the transfer function, are applicable to linear,

stationary models only. The conceptual simplicity of using the input–output repre-

sentation of a dynamic system is lost in the complexity of the mathematical forms

with models that are nonlinear, have many inputs, outputs, or both, or simply are of

an order higher than third. Moreover, it is not even possible to obtain input–output

differential equations for most nonlinear systems because the presence of nonlinear-

ities inhibits the combination of model equations to eliminate unwanted variables.

3.3 STATE MODELS

The concept of the state of a dynamic system was promoted in the 1950s. Its signif-

icance has grown since then, and today the state approach to modeling is the most

powerful and dominant technique used in analysis of engineering systems.

The term state is very similar to the thermodynamic state of a substance. In

thermodynamics, there exist a minimum number of variables such as temperature

and pressure that, when known, allow one to deduce all important properties of a

substance. Similarly, in a given dynamic system, there exists a minimum set of physical

variables, called the state variables that, when known, tell everything one needs to

know about that system at that instant in time. Moreover, if the state of the system

at time t0 and the inputs for time greater than t0 are known, one can completely

determine the behavior of the system for all time t greater than t0.

The physical variables, or quantities, that when known completely describe

the state of the system are called state variables. These variables are usually well-

known and measurable quantities, such as displacement and velocities, in mechanical

systems.

The set of state variables can be assembled in an ordered grouping, a vector. This

is called, not surprisingly, the state vector. The state vector is an important concept

because it opens the door to a geometric interpretation of the state of a dynamic

system. If the state vectors can be interpreted as geometric vectors, then the state

variables can be used to describe a geometric space, called the state space. It is well

known to engineers that any ordered set of two or three numbers has a geometric

interpretation of a point in physical space. An ordered set of two numbers determines

a point on a plane (the Cartesian plane, for example), whereas a set of three numbers

uniquely determines the location of a point in a physical space. However, unlike

in planar or spatial geometry, the space described by state variables can be of a

dimension higher than three. Although this may make visualization difficult, the vast

array of mathematical tools available for geometric analysis can be applied to the

analysis of state models of dynamic systems. This property lies at the heart of the

62 Mathematical Models

power of state models, and methods that take advantage of this property are often

referred to as state-space methods.

Because the values of the state variables at any instant in time determine the

state of the system at that instant, the state of a system at any instant in time can be

viewed as a point in state space. As time progresses and the dynamic system changes,

the state variables change, thus moving the system to a new location in state space. A

system can therefore be envisioned as a point moving smoothly in time through many

locations, following a continuous curve in state space. This curve, which describes

the system behavior in time, is called the state trajectory. State trajectories are very

powerful tools in visualizing and understanding behavior, particularly of complex

and nonlinear systems. Recent advances in the field of nonlinear dynamics and what

is now known as “chaos theory” have relied heavily on the interpretation of state

trajectories.2

The basic terms associated with the state models, are now defined:

� State of a dynamic system is defined by the smallest set of variables such that the

knowledge of these variables at time t = t0, together with the knowledge of the

input for t > t0, completely determines the behavior of the system for time t ≥ t0.
� State variables, q1, q2, . . . , qn, are the elements of the smallest set of variables

required for completely describing the state of the system. One important impli-

cation of this definition is that state variables are independent of each other. If it

were possible to express any of the state variables in terms of others, those vari-

ables would not be necessary to uniquely describe the system dynamics, and such

a set of variables would not constitute the smallest set of variables as required by

the definition of the state of a dynamic system.
� State vector of a dynamic system is the column vector q whose components are

the state variables, q1, q2, . . . , qn.
� State space is an n-dimensional space containing the n-system state variables. The

state of a dynamic system at any instant of time t is represented by a single point

in the state space.
� State trajectory is the path over time of the point representing the state of the

system in a state space.

The concepts of state and state space are extremely powerful, yet somewhat

abstract and difficult for a newcomer to the field to fully appreciate. The following

example of a simple mechanical system should help to clarify these concepts.

EXAMPLE 3.5

Imagine you are standing in the center of a large field holding a small rock. You hurl the

rock directly upward, stand out of the way, of course, and watch it return to earth. The

behavior of the rock is very simple to describe if losses of energy that are due to wind

resistance are negligible. This is a well-known ballistics problem of a projectile of a given

initial velocity and moving under constant acceleration (gravity). Consider this problem

from the state-space standpoint.

First it is necessary to identify the variables that are required for defining the system

(the rock) at any instant in time. Clearly velocity is one of these variables, as the kinetic

2 S. H. Strogratz, Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, MA, 1994).

3.3. State Models 63

energy of the rock is completely determined by velocity. Also, as the rock moves vertically

upward in the earth’s gravitational field, it gains potential energy because of its height

in that field. As the rock moves downward, it loses potential energy and regains its

kinetic energy. It is therefore clear that knowing the position (height) of the rock is also

necessary to determine its state. It can thus be concluded that the state of the system

can be determined by two variables, velocity v and position x. Because two variables are

chosen, the system is said to be of a second order and its state space is two dimensional.

The elemental equations that can be used to calculate the two state variables are

v(t) =
∫ t

0

a dt + v(0),

x(t) =
∫ t

0

v(t)dt + x(0),

where v(0) is the initial velocity of the rock and x(0) is its initial position. Given that the

acceleration a is constant at one standard gravity g, and assuming that the initial position

of the rock is zero, the velocity and height at time t can be found from the integrals

v(t) = at + v(0),

x(t) =
1

2
at2 + v(0)t.

Consider now a graph of the state of the rock in a coordinate system in which the

rock’s height is on the horizontal axis and its velocity is on the vertical axis, as shown in

Fig. 3.7. At time t = t0, the state is defined as a point at (0, v0) on the vertical axis. As time

progresses, the rock gains height and its velocity decreases. This is illustrated by the tra-

jectory’s moving downward and to the right until it intersects the horizontal axis at (x f 0).

This point represents the maximum height x f achieved by the rock and velocity equal to

zero. After reaching this point, the rock begins to fall back to earth, the velocity becomes

negative, and the trajectory ends at the point (0, –v0), representing the point at which the

rock strikes the earth with a velocity of the same magnitude but opposite direction of the

initial velocity (which is why you had to step out of the way after hurling the rock!).

Mathematically, state models take the form of sets of first-order differential equa-

tions, as follows:

q̇1 = f1(q1, q2, . . . , qn, u1, u2, . . . , ul , t),

q̇2 = f2(q1, q2, . . . , qn, u1, u2, . . . , ul , t)
...

q̇n = fn(q1, q2, . . . , qn, u1, u2, . . . , ul , t), (3.6)

Figure 3.7. State trajectory of a rock thrown vertically from x0.

64 Mathematical Models

Figure 3.8. Block diagram of a state model.

where q1, q2, . . . , qn are the system state variables and u1, u2, . . . , u1, are the input variables.

If the model is nonlinear, at least one of the functions fi, i = 1, 2, . . . , n, is nonlinear.

Although the state vector completely represents the system dynamics, the selected

state variables are not necessarily the same as the system outputs. However, each output

variable, or, in general, any system variable that is of interest, can be expressed mathemat-

ically in terms of the system state variables and the input variables. A block diagram of

a state representation of a multi-input, multi-output dynamic system is shown in Fig. 3.8.

In general, the system output equations can be written in the following form:

y1 = g1(q1, q2, . . . , qn, u1, u2, . . . , ul , t),

y2 = g2(q1, q2, . . . , qn, u1, u2, . . . , ul , t)
...

yp = gp(q1, q2, . . . , qn, u1, u2, . . . , ul , t). (3.7)

It should be noted that, although the state model given by Eqs. (3.6) provides a

complete description of the system dynamics, the output model given by Eqs. (3.7) rep-

resents static relations that exist between the selected output variables and the system

input and state variables. Consequently, the state equations [Eqs. (3.6)] are first-order

differential equations, whereas the output equations [Eqs. (3.7)] are algebraic equations

with no derivatives of any of the system variables.

If a system model is linear, all functions on the right-hand sides of state equations

(3.6), fi for i = 1, 2, . . . , n, and all functions on the right-hand sides of output equations

(3.7), gj for j = 1,2, . . . , p, are linear. Also, in stationary model equations, system param-

eters do not vary with time, and thus linear, stationary-state model equations take the

form

q̇1 = a11q1 + a12q2 + · · · + a1nqn + b11u1 + b12u1 + · · · + b1lul ,

q̇2 = a21q1 + a22q2 + · · · + a2nqn + b21u1 + b22u2 + · · · + b2lul

... (3.8)

q̇n = an1q1 + an2q2 + · · · + annqn + bn1u1 + bn2u2 + · · · + bnlul .

The linear output equations are

y1 = c11q1 + c12q2 + · · · + c1nqn + d11u1 + d12u2 + · · · + d1lul ,

y2 = c21q2 + c22q2 + · · · + c2nqn + d21u1 + d22u2 + · · · + d2lul

... (3.9)

yp = cp1q1 + cp2q2 + · · · + cpnqn + dp1u1 + dp2u2 + · · · + dplul .

3.3. State Models 65

Equations (3.8) and (3.9) can be written in matrix–vector notation:

⎡

⎢

⎢

⎢

⎣

q̇1

q̇2

...

q̇n

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...

anl an2 · · · ann

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

q1

q2

...

qn

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

b11 b12 · · · b1l

b21 b22 · · · b2l

...

bn1 bn2 · · · bnl

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

u1

u2

...

ul

⎤

⎥

⎥

⎥

⎦

, (3.10)

⎡

⎢

⎢

⎢

⎣

y1

y2

...

yp

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

c11 c12 · · · c1n

c21 c22 · · · c2n

...

cp1 cp2 · · · cpn

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

q1

q2

...

qn

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

d11 d12 · · · d1l

d21 d22 · · · d2l

...

dp1 dp2 · · · dpl

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

u1

u2

...

ul

⎤

⎥

⎥

⎥

⎦

. (3.11)

These equations can be rewritten in more compact forms:

q = Aq + Bu, (3.10a)

y = Cq + Du, (3.11a)

where A is an n × n state matrix, B is an n × l input matrix, C is a p × n output matrix,

D is a p × l direct-transmission matrix, q is a state vector, u is an input vector, and y is an

output vector.

As mentioned before, the selection of state variables constitutes a nontrivial problem,

because for each system there are usually many different sets of variables that uniquely

represent the system dynamics. The following sets of variables are most commonly used

as state variables:

(1) sets of T-type and A-type variables associated with T and A energy-storing

elements of the system;

(2) sets including one variable and its successive derivatives;

(3) sets including two or more variables and their derivatives;

(4) sets including an auxiliary variable and its successive derivatives.

In addition, there are still other, relatively less common types of state variables, such

as the variables associated with the roots of the system characteristic equation obtained by

means of manipulation of the system matrix or sets of variables obtained as nonredundant

algebraic combinations of other state variables.3

In general, the state of a dynamic system evolves from the process of storing energy

in those system components that are capable of storing it. In fact, the number of state

variables is always equal to the number of independent energy-storing elements in the

system, regardless of the type of the state variables employed.4

In Example 3.6, the first three most common types of the state models just listed

are derived. The use of an auxiliary variable and its derivatives as the state variables is

demonstrated in Section 3.4.

3 Y. Takahashi. M. J. Rabins, and D. M. Auslander, Control and Dynamic Systems (Addison-Wesley,

Reading, MA, 1972).
4 Strictly speaking, the number of state variables is equal to the number of independent energy-storing

processes in the system. If an element is involved in two energy-storing processes, two state variables

are needed to represent this element in the state model. An example of such an element is the roller in

Problem 3.11. The roller stores kinetic energy from its translational motion and, independently, kinetic

energy from the rotational motion, thus requiring both translational and rotational velocities to be

used as the state variables.

66 Mathematical Models

EXAMPLE 3.6

Derive state models of types (1), (2), and (3) for the mechanical system shown in

Fig. 3.3.

SOLUTION

Type (1): T-type and A-type variables There are four independent energy-storing ele-

ments in the system shown in Fig. 3.3: masses m1 and m2, and springs k1 and k2. Masses in

mechanical systems are A-type elements, which can store kinetic energy, whereas springs

are T-type elements, capable of storing potential energy. The respective A-type and T-

type variables are the velocities of the two masses, v1 and v2 and the forces exerted by the

springs, Fk1 and Fk2. Hence the four variables selected to represent the state of the system

are q1 = Fk1, q2 = v1, q3 = Fk2, and q4 = v2. To derive the state equations, first consider

the forces exerted by the springs, Fk1, and Fk2. The equations defining these forces are

Fk1 = k1x1,

Fk2 = k2(x2 − x1).

Differentiating both sides of these equations with respect to time gives the first two

state-variable equations:

Ḟk1 = (k1)v1,

Ḟk2 = (−k2)v1 + (k2)v2.

The equations of motion for masses m1, and m2 derived in Example 3.2 were

m1
d2x1

dt2
︸ ︷︷ ︸

dv1/dt

+b1
dx1

dt
︸︷︷︸

v1

+ k1x1
︸︷︷︸

Fk1

− k2(x2 − x1)
︸ ︷︷ ︸

Fk2

= F1(t),

m2
d2x2

dt2
︸ ︷︷ ︸

dv2/dt

+ k2(x2 − x1)
︸ ︷︷ ︸

Fk2

= 0,

which give the other two state-variable equations

v̇1 = −
1

m1
Fk1 −

b1

m1
v1 +

1

m1
Fk2 +

1

m1
F1(t),

v̇2 = −
1

m2
Fk2.

Rewriting the state-variable equations in vector–matrix form yields

⎡

⎢

⎢

⎣

Ḟk1

v̇1

Ḟk2

v̇2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 k1 0 0

−1/m1 −b1/m1 1/m1 0

0 −k2 0 k2

0 0 −1/m2 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Fk1

v1

Fk2

v2

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0

1/m1

0

0

⎤

⎥

⎥

⎦

F1(t).

3.3. State Models 67

The output equations for the displacements x1 and x2 are

x1 =
1

k1
Fk1,

x2 =
1

k1
Fk1 +

1

k2
Fk2.

In vector–matrix form, the output model equations are written as

[

x1

x2

]

=
[

1/k1 0 0 0

1/k1 0 1/k2 0

]

⎡

⎢

⎢

⎣

Fk1

v1

Fk2

v2

⎤

⎥

⎥

⎦

+
[

0

0

]

F1(t).

Type (2): One variable and its successive derivatives State variables of this type are

particularly convenient when an input–output equation is available. Very often in such

cases the output variable and successive derivatives are selected as the state variables. In

Example 3.2, the input–output equations for the system shown in Fig. 3.3 were derived

relating displacements x1 and x2 to the input force F1(t). Both equations are of fourth

order, and so four state variables are needed to uniquely represent the system dynamics.

Let x2 and its first three derivatives be selected as the state variables – i.e., q1 = x2, q2 =
dx2/dt, q3 = d2x2/dt2, and q4 = d3x2/dt3.

The input–output equation relating x2 to the input force F1(t) was

d4x2

dt4
+

(
b1

m1

)
d3x2

dt3
+

(
k2

m2
+

k1

m1
+

k2

m1

)
d2x2

dt2

+
(

b1k2

m1m2

)
dx2

dt
+

(
k1k2

m1m2

)

x2 =
(

k2

m1m2

)

F1(t).

By use of the preceding equation and the definitions of the selected state variables, the

following state equations are formed:

q̇1 = q2,

q̇2 = q3,

q̇3 = q4,

q̇4 = −
(

k1k2

m1m2

)

q1 −
(

b1k2

m1m2

)

q2

−
(

k1

m1
+

k2

m2
+

k2

m1

)

q3 −
(

b1

m1

)

q4 +
(

k2

m1m2

)

F1(t).

It can be seen that x1 = x2 − (x2 − x1) = x2 − Fk2/k2 = x2 + (m2/k2)(d2x2/dt2); then, if

x1 and x2 are selected as the output variables y1 and y2, respectively, the output equations

become

y1 = q1 +
(

m2

k2

)

q3 = x1,

y2 = q1 = x2.

68 Mathematical Models

Type (3): Two or more variables and their derivatives State variables of this type are used

most often in modeling mechanical systems. For the system considered in this example,

x1 and x2 and their derivatives ẋ1 and ẋ2 are selected as the four state variables. Noting

that ẋ1 = v1 and ẋ2 = v2 and using the equations of motion for masses m1 and m2 derived

in Example 3.2, one obtains the following state equations:

q̇1 = q3,

q̇2 = q4,

q̇3 = −
(

k1

m1
+

k2

m1

)

q1 +
(

k2

m1

)

q2 −
(

b1

m1

)

q3 +
(

1

m1

)

F1(t),

q̇4 =
(

k2

m2

)

q1 −
(

k2

m2

)

q2,

where q1 = x1, q2 = x2, q3 = v1, and q4 = v2.

The output equations are simply

y1 = q1,

y2 = q2.

3.4 TRANSITION BETWEEN INPUT–OUTPUT AND STATE MODELS

At the beginning of this chapter, both input–output and state models were said to

be equivalent in the sense that each form completely represents the dynamics of

the same system. It is therefore natural to expect that there is a corresponding state

model involving successive derivatives of one state variable for each input–output

model, and vice versa. The transition between the two forms of models is indeed

possible, although it is not always straightforward.

Consider first a simple case of a single-input, single-output system model with

no derivatives of the input variable present in the input–output equation:

an

dn y

dtn
+ · · · + a1

dy

dt
+ a0 y = b0u. (3.12)

If the following state variables are selected [as in type (2) in Section 3.3],

q1 = y, q2 =
dy

dt
, . . . , qn =

dn−1 y

dtn−1
, (3.13)

the equivalent set of state-model equations is

q̇1 = q2,

q̇2 = q3
...

q̇n−1 = qn,

q̇n = −
(

a0

an

)

q1 −
(

a1

an

)

q2 − · · · −
(

an−1

an

)

qn +
(

b0

an

)

u. (3.14)

The procedure for the transition between an input–output model and an equiv-

alent state model becomes more complicated if derivatives of input variables are

3.4. Transition Between Input–Output and State Models 69

Figure 3.9. Equivalent input–output and state models.

present on the right-hand side of the input–output equation. The input–output equa-

tion of a single-input, single-output model in this case is

an =
dn y

dtn
+ · · · + a1

dy

dt
+ a0 y = bm

dmu

dtm
+ · · · + b1

du

dt
+ b0u, (3.15)

where m ≤ n for physically realizable systems. An equivalent state model in this case

consists of a set of state-variable equations based on a state variable and (n − 1) of

its derivatives together with the output equations, as illustrated in Fig. 3.9.

To obtain an equivalent state model, first the higher derivatives of the input

variable in Eq. (3.15) are ignored to yield an auxiliary input–output differential

equation:

an

dnx

dtn
+ · · · + a1

dx

dt
+ a0x = u, (3.16)

where x is an auxiliary state variable. The set of equivalent state equations for the

auxiliary input–output equation [Eq. (3.16)] can be obtained as before, by use of the

auxiliary variable and its successive derivatives as the state variables [the type (4)

state variables discussed in Section 3.3]:

q1 = x, q2 = ẋ, . . . , qn =
dn−1x

dtn−1
. (3.17)

The state equations become

q̇1 = q2,

q̇2 = q3
...

q̇n−1 = qn,

q̇n = −
a0

an

q1 −
a1

an

q2 − · · · −
an−1

an

qn +
1

an

u. (3.18)

Applying the differentiation operator introduced in Section 3.2 to Eqs. (3.15) and

(3.16) gives

y(an Dn + · · · + a1 D + a0) = u(bmDm + · · · + b1 D + b0), (3.19)

x(an Dn + · · · + a1 D + a0) = u. (3.20)

70 Mathematical Models

Substitution of the expression on the left-hand side of Eq. (3.20) for u in Eq.

(3.19) yields

y = x(bmDm + · · · + b1 D + b0). (3.21)

Now use the definition of the D operator to transform Eq. (3.21) for back to the

time domain:

y = bm

dmx

dtm
+ · · · + b1

dx

dt
+ b0x. (3.22)

.

The auxiliary variable x and its derivatives can be replaced with the state variables

defined by Eqs. (3.17) to produce the following output equation:

y = b0q1 + b1q2 + · · · + bmqm+1 for m < n. (3.23)

.

Equation (3.23) holds for m < n. If both sides of the input–output equation are

of the same order, m = n, then qm+1 in Eq. (3.23) is replaced with the expression

for q̇n given by the last of Eqs. (3.18) and the output equation becomes

y =
(

b0 −
bma0

an

)

q1 +
(

b1 −
bma1

an

)

q2 + · · ·

+
(

bm−1 −
bman−1

an

)

qn +
(

bm

an

)

u for m = n. (3.24)

The input–output equation involving derivatives of the input variable [Eq. (3.15)]

is therefore equivalent to the state model, consisting of the auxiliary state-variable

equations [Eqs. (3.18)] and output equations [Eqs. (3.23) and (3.24)] for m < n and

m = n, respectively.

The procedure for transforming input–output equations into an equivalent state

model is illustrated in Example 3.7.

EXAMPLE 3.7

Consider again the mechanical system shown in Fig. 3.4. The input–output equation for

this system, derived in Example 3.3, was

(m1m2)
d4x2

dt4
+ (m2b1 + m2b2 + m1b2)

d3x2

dt3

+ (m1k2 + m2k1 + m2k2 + b1b2)
d2x2

dt2

+ (b1k2 + b2k1)
dx2

dt2

+ k1k2x2 = b2
dF1

dt
+ k2 F1.

Derive an equivalent state model for this system.

3.5. Nonlinearities in Input–Output and State Models 71

SOLUTION

First, the derivative of F1 is ignored and a simplified input–output equation is obtained

by use of the auxiliary output variable x:

(m1m2)
d4x

dt4
+ (m2b1 + m2b2 + m1b2)

d3x

dt3

+ (m1k2 + m2k1 + m2k2 + b1b2)
d2x

dt2

+ (b1k2 + b2k1)
dx

dt
+ k1k2x = F1.

The state variables are

q1 = x, q2 =
dx

dt
, q3 =

d2x

dt2
, q4 =

d3x

dt3
,

and the state-variable equations are

q̇1 = q2,

q̇2 = q3,

q̇3 = q4,

q̇4 = −
(

k1k2

m1m2

)

q1 −
[

(b1k2 + b2k1)

m1m2

]

q2

−
[

(m1k2 + m2k1 + m2k2 + b1b2)

m1m2

]

q3

−
[

(m2b1 + m2b2 + m1b2)

m1m2

]

q4 +
(

1

m1m2

)

F1.

The output variable in this system is displacement x2. The form of the output equation is

given by Eq. (3.23), which in this case becomes

x2 = k2q1 + b2q2,

which completes the system mathematical model in a state form.

3.5 NONLINEARITIES IN INPUT–OUTPUT AND STATE MODELS

Very often in modeling dynamic systems, nonlinear characteristics of some of the

system elements cannot be linearized either because the linearization error is not

acceptable or because a particular nonlinearity may be essential for the system per-

formance and must not be replaced with a linear approximation. The superiority of

state models over input–output models in such cases is particularly pronounced. The

derivation of input–output differential equations for systems in which nonlinearities

are to be modeled without linearization is usually very cumbersome or even impos-

sible, to say nothing about solving those equations. The derivation of state models,

on the other hand, is barely affected by the presence of nonlinearities in the system.

Furthermore, most computer programs for solving sets of state-variable equations

are capable of handling both linear and nonlinear models.

The effect of nonlinearities on the process of derivation of the two forms of

mathematical models is illustrated in Example 3.8.

72 Mathematical Models

Figure 3.10. Mechanical system with NLS.

EXAMPLE 3.8

The mechanical system shown in Fig. 3.10 is similar to the system considered earlier in

Example 3.2, except that the linear spring k2 is here replaced with a NLS.

The force generated by the NLS, FNLS, is approximated by

FNLS = fNL(z2 − z1) = c |z2 − z1| (z2 − z1),

where c is a constant and z1 and z2 are displacements of the two masses measured from

their respective spring-relaxed positions, r1 and r2:

z1 = �1 + x1,

z2 = �2 + x2,

where �1 and �2 are displacements that are due to gravity and x1 and x2 are displacements

that are due to force F1(t) measured from the static-equilibrium positions of the masses,

se1 and se2, respectively. Recall that a similar notation was used for vertical displacements

in Example 2.5.

The square-law expression embodied in the function fNL is a fairly common type of

nonlinearity, although the specific form of the nonlinear function is of no significance

here.

Derive an input–output equation by using x2 as the output variable and a set of state

equations for this system.

SOLUTION

The equations of motion for masses m1 and m2 are

m1z̈1 + b1ż1 + k1z1 − c |z1 − z2| (z1 − z2) = F1(t) + m1g,

m2z̈2 + c |z1 − z2| (z1 − z2) = m2g.

One would normally obtain the input–output equation relating output x2 to input Fl(t)

by combining the preceding equations of motion and eliminating zl (and subtracting �2

to get x2). However, in this case, the substitution is impossible because of the nonlinear

term present in both equations!

3.5. Nonlinearities in Input–Output and State Models 73

To obtain a state model, select displacements z1 and z2 and their derivatives v1 and

v2 as the state variables. Based on the definitions of the state variables and the equations

of motion, the state-variable equations are

ż1 = v1,

v̇1 = −
k1

m1
z1 −

b1

m1
v1 +

c

m1

|z2 − z1| (z2 − z1) +
1

m1
F1(t) + g,

ż2 = v2,

v̇2 = −
c

m2

|z2 − z1| (z2 − z1) + g,

or, with general symbols used for the state variables,

q̇1 = q2,

q̇2 = −
k1

m1
q1 −

b1

m1
q2 +

c

m2

|q3 − q1| (q3 − q1) +
1

m1
F1(t) + g,

q̇3 = q4,

q̇4 = −
c

m2

|q3 − q1| (q3 − q1) + g,

where q1 = z1, q2 = v1, q3 = z2, and q4 = v2. Note that two inputs are used in this model,

F1(t) and g.

The preceding state-variable equations can be solved numerically by use of one

of the methods described in Chap. 5.

EXAMPLE 3.9

Linearize the state-variable equations derived in Example 3.8 for the system shown in

Fig. 3.10 in a small vicinity of a normal operating point determined by the input force,

F1(t) = F̄1 = const.

SOLUTION

You solve this problem by following the five-step procedure introduced in Section 2.4.

Step 1. Derive the nonlinear model. The following state-variable equations were derived

in Example 3.8:

ż1 = v1,

v̇1 = −
k1

m1
z1 −

b1

m1
v1 +

c

m1

|z2 − z1| (z2 − z1) +
1

m1
F1(t) + g,

ż2 = v2,

v̇2 = −
c

m2

|z2 − z1| (z2 − z1) + g.

Step 2. Determine the normal operating point. The normal operating point is determined

by the constant input force, F1(t) = F̄1 = const, and the corresponding unknown values of

74 Mathematical Models

the four state variables, z1 = z̄1 = const, v1 = v̄1 = const, z2 = z̄2 = const, and v2 = v̄2 =
const. The unknown normal operating–point values of the state variables can be found

by their substitution into the state-variable equations, which yields

0 = v̄1,

0 = −k1z̄1 + c |z̄2 − z̄1| (z̄2 − z̄1) + F̄1 + m1g,

0 = v̄2,

0 = −c |z̄2 − z̄1| (z̄2 − z̄1) + m2g.

The preceding equations describe the system at the normal operating point estab-

lished in the system by the constant input force, F̄1. It can be seen that at the normal

operating point the system is at rest (the velocities of both masses are zero), whereas

one can find the displacements of the two masses by solving the preceding equations and

assuming that c > 0 to obtain

z̄1 =
1

k1
(F̄1 + m1g + m2g),

z̄2 =
1

k1
(F̄1 + m1g + m2g) +

√

m2g

c
.

Step 3. Introduce incremental variables. Substitute z1 = z̄1 + ẑ1, z2 = z̄2 + ẑ2, v1 = v̄1 +
v̂1, v2 = v̄2 + v̂2, and F1(t) = F̄1 + F̂1 into the original state-variable equations:

˙̄z1 + ˙̂z1 = v̄1 + v̂1,

˙̄v1 + ˙̂v1 = −
k1

m1
(z̄1 + ẑ1) −

b1

m1
− (v̄1 + v̂1) +

1

m1
fNL(z̄21 + ẑ21) +

1

m1
(F̄1 + F̂1) + g,

˙̄z2 + ˙̂z2 = v̄2 + v̂2,

˙̄v2 + ˙̂v2 = −
1

m2
fNLS(z̄21 + ẑ21) + g,

where z21 = z2 − z1 and fNLS (z21) is the NLS characteristic. Substituting zeros for terms

involving v̄1, v̄2 and derivatives of all constant components yields

˙̂z1 = v̂2,

˙̂v1 = −
k1

m1
(z̄1 + ẑ1) −

b1

m1
v̂1 +

1

m1
fNL(z̄21 + ẑ21) +

1

m1
(F̄1 + F̂1) + g,

˙̂z2 = v̂2,

˙̂v2 = −
1

m2
fNLS(z̄21 + ẑ21) + g.

Step 4. Linearize the nonlinear terms. Expand fNLS(z̄21 + ẑ21) into Taylor series, neglect-

ing second- and higher-order terms:

fNLS(z̄21 + ẑ21) ≈ fNLS(z̄21) + ẑ21

(
dfNLS

dz21

)

z̄21

= c |z̄2 − z̄1| (z̄2 − z̄1) + (ẑ2 − ẑ1)2c |z̄2 − z̄1| .

3.5. Nonlinearities in Input–Output and State Models 75

Step 5. Arrange the linearized equations into a final form. Substitute the linearized

expression obtained in Step 4 into the equations derived in Step 3:

˙̂z1 = v̂1,

˙̂v1 = −
k1

m1
(z̄1 + ẑ1) −

b1

m1
v̂1 +

c

m1
[|z̄2 − z̄1| (z̄2 − z̄1)]

+
2c

m1

|z̄2 − z̄1| (ẑ2 − ẑ1) +
1

m1
(F̄1 + F̂1) + g,

˙̂z2 = v̂2,

˙̂v2 = −
c

m2

|z̄2 − z̄1| (z̄2 − z̄1) −
2c

m2

|z̄2 − z̄1| (ẑ2 − ẑ1) + g.

Referring to the equations for the normal operating point derived in Step 2, it can be

seen that all constant terms in the precedings equations cancel out to give the linearized

state-variable equations:

˙̂z1 = v̂1,

˙̂v1 = −
k1

m1
ẑ1 −

b1

m1
v̂1 +

2c

m1

|z̄2 − z̄1| (ẑ2 − ẑ1) +
1

m1
F̂1,

˙̂z2 = v̂2,

˙̂v2 = −
2c

m2

|z̄2 − z̄1| (ẑ2 − ẑ1).

An incremental spring stiffness that approximates the stiffness of the NLS in a small

vicinity of the normal operating point is defined as

kinc = 2c |z̄2 − z̄1| .

The linearized state-variable equations can now be written in a more compact form:

˙̂z1 = v̂1,

˙̂v1 = −
(k1 + kinc)

m1
ẑ1 −

b1

m1
v̂1 +

kinc

m1
ẑ2 +

1

m1
F̂1,

˙̂z2 = v̂2,

˙̂v2 =
kinc

m2
ẑ1 −

kinc

m2
ẑ2.

The linearized equations can also be arranged into a matrix form:

⎡

⎢

⎢

⎣

˙̂z1

˙̂v1

˙̂z2

˙̂v1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 1 0 0

−(k1 + kinc)/m1 −b1/m1 kinc/m1 0

0 0 0 1

kinc/m2 0 −kinc/m2 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ẑ1

v̂1

ẑ2

v̂2

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0

1/m1

0

0

⎤

⎥

⎥

⎦

F̂1.

The examples presented in this chapter illustrate the effectiveness of the state

approach to system modeling. The state equations are much simpler, and the entire

process of derivation is less vulnerable to so-called “stupid mistakes,” which may often

be made when the input–output model is developed. Although, as the next chapter will

76 Mathematical Models

show, there are certain advantages associated with using input–output models in analysis

of low-order linear systems, the state-variable approach is in general superior and is used

as much as possible in modeling systems throughout the rest of this book.

3.6 SYNOPSIS

Two types of mathematical models of dynamic systems were presented, input–output

models and state models. Although both models are essentially equivalent with

regard to the information about the system behavior incorporated in the model

equations, the techniques used in their derivation and solution are principally dif-

ferent. In most cases the state models, consisting of sets of first-order differential

equations, are much easier to derive and to solve by computer simulation than the

input–output equations. This is especially true when the mathematical models involve

nonlinearities or when the systems modeled have many inputs and outputs and are

to be simulated on the computer.

The state models are based on the concept of state variables. The choice of state

variables for a given system is not unique. Four different types of state variables

were used in example problems presented in this chapter. It was shown that the

number of state variables necessary to describe the system dynamics is always equal

to the number of independent energy-storing elements, regardless of the type of state

variables used. Also, the number of state variables is the same as the order of the

input–output equation.

PROBLEMS

3.1 Derive a complete set of state-model equations for the mechanical rotational system

shown in Fig. P3.1. Select the following state variables:

(a) T-type and A-type variables,

(b) one variable and its derivative.

Use torque Ti (t) as the input variable and angular displacement �l(t) as the input variable

in each model.

Figure P3.1. Mechanical system considered in Problems 3.1 and 3.2.

3.2 Derive an input–output model equation for the system shown in Fig. P3.1, using

torque Ti(t) as the input variable and angular displacement �l(t) as the output variable.

3.3 Derive complete sets of state-model equations for the system shown in Fig. P3.3 by

using three different sets of state variables. The input variable is torque Tm(t) and the

output variables are displacements x1(t) and x2(t). Present the state models in matrix

form.

Problems 3.4–3.7 77

Figure P3.3. Mechanical system considered in Problem 3.3.

3.4 A nonlinear dynamic system has been modeled by the state-variable equations

q̇1 = −4q1 + 10q2 + 4u1,

q̇2 = 0.5q1 − 2 |q2| q2,

where q2 is also the output variable and u1 is the input variable.

(a) Linearize the state-variable equations.

(b) Find the input–output equation for the linearized model.

3.5 Linearize the state-variable equations derived in Example 2.7 for the power trans-

mission system [Eqs. (2.55)–(2.57)]. Combine the linearized equations to obtain an input–

output equation for the system using torque TK as the output variable.

3.6 The state-model matrices of a single-input, single-output linear dynamic system are

A =
[

−3 −19

1 −2

]

, B =
[

0

−1

]

,

C = [0, 2] , D = 0

The column vector q of the system state variables contains q1 and q2. Find the input–

output model for this system.

3.7 A linear dynamic system is described by the differential equations

ÿ + 4ẏ + 4y = 2ẋ + 2x,

2ẋ + x − y = u(t).

(a) Derive the input–output model for this system using y(t) as the output variable and

u(t) as the input variable.

(b) Derive a state model and present it in matrix form.

78 Mathematical Models

3.8 Derive a set of state-variable equations for the mechanical system shown in Fig. P3.8.

Figure P3.8. Mechanical system considered in Problems 3.8. and 3.9.

3.9 Derive the input–output model equation for the system shown in Fig. P3.8. using

torque Tm(t) as the input variable and angular velocity �2 as the output variable.

3.10 A lumped model of a machine-tool drive system is shown in Fig. P3.10. The sys-

tem parameters are Jm = 0.2 N m s2/rad, Bm = 30 N m s/rad, m = 16 kg, k = 20 N/m,

R = 0.5 m. The stiffness of the shaft is represented by a nonlinear torque, TNLS =
2 |�1 − �2| (�1 − �2). The force of the nonlinear friction device NLD is FNLD = fNL(v1) =
2v3

1 + 4v1. The system is driven by a torque consisting of a constant and an incremental

component, Ti(t) = 0.8 + 0.02 sin (0.1t) N m.

Figure P3.10. Lumped model of a machine-tool drive system.

Problems 3.10–3.14 79

(a) Select state variables and derive nonlinear state-variable equations.

(b) Find the normal operating-point values for all state variables.

(c) Linearize the state-model equations in the vicinity of the normal operating point.

Present the linearized state model in a matrix form.

(d) Derive the input–output model equation for the linearized system using the incre-

mental torque T̂1(t) as the input variable and the incremental displacement x̂1(t) as

the output variable.

3.11 Derive state-variable equations for the system shown in Fig. P2.10. Use velocities

v1 and v2 and the spring force Fkl as the state variables. Note that the two springs in this

system are not independent as long as the lever is massless. Combine the state-variable

equations to obtain an input–output equation relating velocity v2 to force Fs(t).

3.12 The mechanical system shown in Fig. P3.12 is driven by two inputs: force Fi and

torque Ti. The roller, whose mass is m and whose moment of inertia is J, rolls and/or

slides on the surface of the carriage having mass mc. The contact between the roller and

the carriage is lubricated, and the friction at the contact point is viscous in nature with a

coefficient bc. Select state variables and derive the state-variable equations for the system.

Figure P3.12. Mechanical system considered in Problem 3.12.

3.13 This problem refers to the spring–mass–damper problem, 2.18.

(a) Derive a state-equation model of the system and compare it with the input–output

model derived for Problem 2.18.

(b) Comment on the process of deriving the model using the two methods.

(c) Convert the state model to an input–output representation and verify that it is equiv-

alent to the model derived for Problem 2.18.

3.14 Figure P3.14 shows a schematic representation of a mechanical drive system. Derive

two state models for this system:

J1 J2

M, b k

x

Ti , Ω1

Figure P3.14. Schematic of a mechanical drive system.

80 Mathematical Models

(a) Consider the shaft between J1 and J2 to be rigid.

(b) Consider the shaft between J1 and J2 to be flexible with a torsional spring stiffness

of K.

(c) Compare and contrast the two models and comment on their utility for various

applications.

4

Analytical Solutions of System

Input–Output Equations

LEARNING OBJECTIVES FOR THIS CHAPTER

4–1 To use analytical solution methods for ODEs to predict the response of first-

and second-order systems to nonzero initial conditions and typical input signals.

4–2 To estimate key parameters (i.e., time constant, natural frequency, and damping

ratio) in system responses.

4–3 To use solution methods for ODEs to derive the relationship between the com-

plex roots of underdamped second-order systems and the natural frequency and

damping ratio.

4–4 To use the concept of “dominant poles” to estimate the response of higher-order

systems when one or two poles dominate the system’s dynamic behavior.

4.1 INTRODUCTION

In Chap. 3, the state representation of system dynamics was introduced and the

derivation of state equations was shown to be a relatively simple and straightforward

process. Moreover, the state models take the form of sets of first-order differential

equations that can be readily solved by use of one of many available computer

programs. Having these unquestionable advantages of state-variable models in mind,

one might wonder whether devoting an entire chapter to the methods for solving the

old-fashioned input–output model equations is justified. Despite all its limitations, the

classical input–output approach still plays an important role in analysis of dynamic

systems because many of the systems to be analyzed are neither very complex nor

nonlinear. Such systems can be adequately described by low-order linear differential

equations. Also, even in those cases in which a low-order linear model is too crude to

produce an accurate solution and a computer-based method is necessary, an analytical

solution of an approximate linearized input–output equation can be used to verify

the computer solution.

Section 4.2 gives a brief review of methods for solving linear differential equa-

tions. The next three sections deal with application of analytical methods to systems

represented by first-, second-, and higher-order linear differential equations.

81

82 Analytical Solutions of System Input–Output Equations

4.2 ANALYTICAL SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

An input–output equation for a linear, stationary, single-input, single-output model

has the following general form:

an

dn y

dtn
+ an−1

dn−1 y

dtn−1
+ · · · + a1

dy

dt
+ a0 y = f (t), (4.1)

where the model parameters, a0, a1, . . . , an, are constant. Function f(t), which is

sometimes referred to as a forcing function, represents a linear combination of terms

involving input signal u(t) and its derivatives that appear on the right-hand side of

Eq. (3.3). Equation (4.1) can be solved for a given f(t) for t ≥ 0 if the initial conditions

for y and its n – 1 derivatives just after the input starts, i.e., at t = 0+, are known:

y(0+) = y0,
dy

dt

∣
∣
∣
∣
t=0+

= ẏ0, . . . ,
dn−1 y

dtn−1

∣
∣
∣
∣
t=0+

= y
(n−1)
0 . (4.2)

Usually the initial conditions are known only as they existed just before the input

started to change, i.e., at t = 0−. The required initial conditions at t = 0+ can usually

be readily determined by use of the initial conditions at t = 0− and information

about the system model and its inputs, through use of the elemental equations, the

interconnecting equations, and energy-storage limitations when they are all available.

To simplify notation, all initial conditions throughout the remainder of this book are

shown at t = 0, even though they will always be meant to be taken at t = 0+.

A complete solution, y(t), of Eq. (4.1) consists of two parts:

y(t) = yh(t) + yp(t) (4.3)

where yh(t) represents a homogeneous (characteristic) solution and yp(t) is a partic-

ular (forced) solution. The homogeneous solution gives the model response for the

input signal equal to zero, f(t) = 0, and thus satisfies

an

dn yh

dtn
+ an−1

dn−1 yh

dtn−1
+ · · · + a1

dyh

dt
+ a0 yh = 0. (4.4)

The particular solution yp(t) satisfies the nonhomogeneous equation

an

dn yp

dtn
+ an−1

dn−1 yp

dtn−1
+ · · · + a1

dyp

dt
+ a0 yp = f (t). (4.5)

Note that when Eqs. (4.4) and (4.5) are added, the original model equation, Eq. (4.1),

is obtained:

an

dn(yh + yp)

dtn
+ an−1

dn−1(yh + yp)

dtn−1
+ · · ·

+ a1

dy(yh + yp)

dt
+ a0(yh + yp) = f (t). (4.6)

Both the homogeneous and particular solution components have to be found. First,

consider the homogeneous solution. One obtains a characteristic equation from Eq.

(4.4) by setting dkyh/dtk = pk for k = 0, 1, . . . , n, which yields

an pn + an−1 pn−1 + · · · + a1 p + a0 = 0. (4.7)

4.2. Analytical Solutions Of Linear Differential Equations 83

This nth-order algebraic equation has n roots, some of which may be identical.

Assume that there are m distinct roots (0 ≤ m ≤ n) and therefore the number of

multiple roots is n – m. To simplify further derivations, all multiple roots of the char-

acteristic equation are left to the end and are denoted by pn, where pn is the value

of the identical roots:

pm+1 = pm+2 = · · · = pn. (4.8)

The general form of the homogeneous solution is

yh(t) = C1ep1t + C2ep2t + · · · + Cmepmt + Cm+1epnt

+ Cm+2tepnt + · · · + Cntn−m−1epnt , (4.9)

or, in more compact form,

yh(t) =
m

∑

i=1

Ci e
pi t +

n
∑

i=m+1

Ci t
i−m−1epi t . (4.10)

The integration constants C1, C2, . . . , Cn will be determined after the particular solu-

tion is found.

Solving for the particular solution is more difficult to generalize because it always

depends on the form of the forcing function f(t). Generally speaking, the form of yp(t)

has to be guessed, based on the form of input, its derivatives, or both.1 A method

of undetermined coefficients provides a more systematic approach to solving for

the particular solution. In many cases in which the forcing function f(t) reaches a

steady-state value, say fss, for time approaching infinity, that is, if

lim
t→∞

f (t) = fss (4.11)

and if a0 �= 0, the particular solution can be calculated simply as

yp(t) = fss/a0. (4.12)

Once the general forms of both parts of the solution are found, the constants that

appear in the two expressions must be determined.

If there are unknown constants in the particular solution – that is, if Eq. (4.12)

cannot be applied – the general expression for the particular solution is substituted

into Eq. (4.5) and the constants are found by the solution of equations created by

equating corresponding terms on both sides of the equation.

To find the integration constants C1, C2, . . . , Cn in the homogeneous solution,

the set of n initial conditions, given by Eqs. (4.2), is used to form the following n

equations:

yh(0) = yp(0) = y(0),
(

dyh

dt

)∣
∣
∣
∣
t=0

+
(

dyp

dt

)∣
∣
∣
∣
t=0

=
(

dy

dt

)∣
∣
∣
∣
t=0

,

...
(

dn−1 yh

dtn−1

)∣
∣
∣
∣
t=0

+

(

dn−1 yp

dtn−1

)∣
∣
∣
∣
∣
t=0

=
(

dn−1 y

dtn−1

)∣
∣
∣
∣
t=0

. (4.13)

where the terms on the right-hand sides represent the initial conditions.

1 When the input is of the form ept , where p is one of the roots of the system characteristic equations,

the particular solution may contain an exponential term of the form Ctept , where one determines C by

substituting Ctept in the system differential equation and solving for C.

84 Analytical Solutions of System Input–Output Equations

The method for solving differential equations of the general form given by

Eq. (4.1) can be summarized by the following step-by-step procedure.

Step 1. Obtain the characteristic equation [Eq. (4.7)].

Step 2. Find roots of the characteristic equation, p1, p2, . . . , pn.

Step 3. Write the general expression for the homogeneous solution, Eq. (4.10).

Step 4. Determine the general expression for the particular solution.

Step 5. Determine constants in the particular solution by equating correspond-

ing terms on both sides of Eq. (4.5). This step can be skipped if the

particular solution was found with Eq. (4.12).

Step 6. Find integration constants C1, C2, . . . , Cn by solving the set of equations

involving the initial conditions [Eqs. (4.13)].

Several examples involving analytical solution of linear input–output equations

are given in Sections 4.3, 4.4, and 4.5.

4.3 FIRST-ORDER MODELS

A linear, stationary, single-input, single-output system model is described by a first-

order differential equation,

a1 ẏ + a0 y = f (t), (4.14)

with the initial condition y(0) = y0. The characteristic equation is

a1 p + a0 = 0. (4.15)

A general form for the model homogeneous solution is

yh(t) = C1ep1t , (4.16)

where a single root of the characteristic equation, p1, is

p1 =
−a0

a1
. (4.17)

A particular solution of Eq. (4.14) depends on the type of the input signal f (t). Three

types of input signals will be considered: zero, step function, and impulse function.

The corresponding system outputs will be free response,2 step response, and impulse

response, respectively.

First, an input will be assumed to be equal to zero, f (t) = 0 for t ≥ 0. The homo-

geneous solution constitutes, in this case, a complete solution given by the expression

y(t) = C1e−(a0/a1)t . (4.18)

2 The term “free response,” adapted from vibration theory, is somewhat of a misnomer. The response

is free only in the sense that the system input is zero for the time interval of interest – in this case, for

t > 0. In all cases, a variation of the output occurs only in response to some past input forcing function

or system change, such as switch or circuit breaker activation, shaft failure, pipe rupture, etc. In this

case, the system is responding to a nonzero initial output condition, which must be the remainder of a

response to a previous input.

4.3. First-Order Models 85

y(t)

y
0

0.37 y
0

0
tτ

Figure 4.1. Free response of first-order model.

One can find the integration constant C1 by setting t = 0 in Eq. (4.18) and using the

initial condition to obtain

C1 = y0, (4.19)

where y0 = y(0). Hence the free response of the first-order model is

y(t) = y0e−(a0/a1)t . (4.20)

The free response curve is shown in Fig. 4.1. The curve starts at time t = 0 from the

initial value y0 and decays exponentially to zero as time approaches infinity. The rate

of the exponential decay is determined by the model time constant � , defined as

� = a1/a0. (4.21)

The time constant is equal to the time during which the first-order model free

response decreases by 63.1% of its initial value. A normalized free response of the

first-order model, y(t)/y0, versus normalized time, t/� , is plotted in Fig. 4.2, and its

numerical values are given in Table 4.1.

The second type of input signal considered here is a step perturbation of f(t)

expressed by the unit step function Us(t):

f (t) = AUs(t), (4.22)

Figure 4.2. Normalized free response of first-order model.

86 Analytical Solutions of System Input–Output Equations

Table 4.1. Normalized free response of first-order model

t/� 0 0.5 1.0 1.5 2.0 2.5 3.0 4.0

y(t)/y0 1 0.6065 0.3679 0.2231 0.1353 0.0821 0.0498 0.0183

where A is the magnitude of the step function. The unit step function Us(t) is defined

by

Us(t) =
{

0 for t < 0

1 for t > 0
. (4.23)

The homogeneous solution in this case is, of course, of the same form as before

[Eq. (4.18)]. Here, the particular solution must satisfy

a1 ẏp + a0 yp = A for t > 0. (4.24)

By use of Eq. (4.12), the particular solution for a step input of magnitude A is

yp(t) =
A

a0
. (4.25)

Hence a complete solution for y(t) is

y(t) = yh(t) + yp(t) = C1e− t
� +

A

a0
. (4.26)

When y(t) = y0 is substituted for t = 0 in Eq. (4.26), the constant C1 is found to be

C1 = y0 −
A

a0
, (4.27)

where C1 now includes a term that is due to u(t). The complete response of the

first-order model is finally obtained as

y(t) = y0e− t
�

︸ ︷︷ ︸

free response part

+
A

a0

(

1 − e− t
�

)

︸ ︷︷ ︸

step response part

. (4.28)

From Eq. (4.26), the steady-state value of the step response, yss, is

yss = lim
t→∞

y(t) =
A

a0
. (4.29)

The step response can now be expressed in terms of its initial and steady-state values,

y(t) = yss − (yss − y0)e− t
� , (4.30)

or in terms of its initial value and the system’s steady-state gain,

y(t) = KA − (KA − y0)e
t
� , (4.31)

where the steady-state gain K is defined as the ratio of the magnitude of output over

the magnitude of input at steady state, which in this case is

K =
yss

fss
=

yss

A
, (4.32)

4.3. First-Order Models 87

t

y(t)

τ3 τ2

τ1

τ1>τ2>τ3

KA

Figure 4.3. Step response curves of first-order
model with zero initial condition y 0 = 0.

or, by use of Eq. (4.29),

K =
1

a0
. (4.33)

When the initial condition is zero, y0 = 0, the step response of the first-order model is

y(t) = yss

(

1 − e− t
�

)

= KA
(

1 − e− t
�

)

. (4.34)

Several step response curves for different values of time constant and zero initial

condition, y0 = 0, are plotted in Fig. 4.3.

The third type of input to be considered here is an impulse function f (t)

expressed by

f (t) = PUi(t), (4.35)

where P is the strength of the impulse function (in other words, its area). The unit

impulse function Ui(t) occurring at time t = 0 is defined by

Ui(t)

{

∞ for t = 0

0 for t �= 0
, (4.36)

∫ +∞

−∞
Ui(t)dt =

∫ 0+

0−
Ui(t)dt = 1.0. (4.37)

In general, a unit impulse, also called Dirac’s delta function, which occurs at time

t = t1, is denoted by Ui(t − t1) and is defined by

Ui(t − t1) =
{

∞ for t = t1
0 for t �= t1

, (4.38)

∫ +∞

−∞
Ui(t − t1)dt =

∫ t+
1

t−
1

Ui(t − t1)dt = 1.0. (4.39)

An ideal unit impulse function as just defined cannot be physically generated. It

can be thought of as a limit of a unit pulse function, Up(t), of amplitude 1/T with the

pulse duration T approaching zero, as illustrated in Fig. 4.4.

The unit impulse function is widely used in theoretical system analysis because

of its useful mathematical properties, which make it a very desirable type of input.

88 Analytical Solutions of System Input–Output Equations

Figure 4.4. Transition from a pulse to an impulse: (a) unit pulse to a unit impulse and (b) pulse of
strength P to an impulse of strength P, together with symbolic vector representations of impulses.

One such property, called a filtering property, is mathematically expressed by the

sifting integral,
∫ +∞

−∞
Ui(t − t1) f (t)dt = f (t1). (4.40)

Equation (4.40) implies that
∫ +∞

−∞
Ui(t) f (t)dt = f (0). (4.41)

Although a rigorous mathematical proof is difficult, a unit impulse function is often

considered as the derivative of a unit step function:

Ui(t) =
dUs(t)

dt
(4.42)

Equation (4.42) implies that the dimension of the amplitude of an impulse function

is (1/time) if the amplitude of a step function is dimensionless. However, because the

4.3. First-Order Models 89

Figure 4.5. Pulse up(t) presented as a sum of
two step functions, u1(t) and u2(t).

amplitude of Ui(t) is infinite at t = 0, an impulse is measured instead by its strength,

P, equal to its integral from t = 0− to t = 0+ [in other words, the area under the

“spikelike” curve representing PUi(t)].

To find a response of a first-order model to an impulse input, it is convenient to

consider an impulse function as a limit of a pulse function with the pulse duration

approaching zero, as illustrated in Fig. 4.4. The system impulse response can then be

determined as a limit of a pulse response with the pulse duration approaching zero.

Consider the response of a first-order model with zero initial condition, y(0) = 0, to

the pulse input shown in Fig. 4.5. The pulse input, up(t), is shown in Fig. 4.5 as a sum

of two step functions, one having amplitude P/T and beginning at t = 0 and the other

having amplitude −P/T and beginning at t = T:

up(t) = u1(t) + u2(t), (4.43)

where

u1(t) =
P

T
Us(t), (4.44)

u2(t) = −
P

T
Us(t − T). (4.45)

Because the system is linear and the principle of superposition applies, the system

pulse response will also consist of two components:

yp(t) = y1(t) + y2(t), (4.46)

where y1(t) is the response to step u1(t) and y2(t) is the response to step u2(t). By

use of Eq. (4.28), the two components of the pulse response are found to be

y1(t) =
P

a0T

(

1 − e− t
�

)

, (4.47)

y2(t) = −
P

a0T

(

1 − e− t−T
�

)

. (4.48)

90 Analytical Solutions of System Input–Output Equations

Figure 4.6. Impulse response of a first-order model together with response to a pulse of strength
P and duration T.

The complete pulse response is

yp(t) =
P

a0T

(

1 − e− t
�

)

−
P

a0T

(

1 − e− t−T
�

)

=
P

a0T
e− t

�

(

e
T
� − 1

)

. (4.49)

Now the impulse response can be obtained as a limit of the pulse response for T

approaching zero. Taking the limit of the expression obtained in Eq. (4.49) and using

1’Hôpital’s rule yields

yi(t) = lim
T→0

yp(t) =
P

a1
e− t

� . (4.50)

If the initial condition is not zero, y(0) = y0, the complete response of the first-order

model is

yi(t) = y0e− t
�

︸ ︷︷ ︸

free response part

+
P

a1
e− t

�

︸ ︷︷ ︸

impulse response part

, (4.51)

or, equally, in terms of the steady-state gain, by use of Eqs. (4.21) and (4.33),

yi(t) = y0e− t
� +

KP

�
e− t

� (4.52)

Figure 4.6 shows an impulse response curve together with the response to a pulse of

width T and strength P for a first-order model.

By use of the principle of superposition, which applies to all linear systems, the

response to several inputs and/or nonzero initial conditions can be obtained as the

sum of the responses to the individual inputs and/or nonzero initial conditions found

separately.

EXAMPLE 4.1

In the mechanical system shown in Fig. 4.7, mass m is initially subjected to a constant

force F and is moving with initial velocity v0. At time t0 the force changes suddenly from

F to F + �F . Find the velocity and acceleration of the mass for time t > t0.

4.3. First-Order Models 91

Figure 4.7. Mechanical system considered in Example 4.1.

SOLUTION

Using force F(t) applied to the mass as the input and using the velocity of the mass v(t)

as the output variable, we can write the input–output equation as

mv̇ + bv = F(t).

Because the velocity of the mass cannot change suddenly, the initial condition is

v(t0) = v0.

A mathematical form describing the input force occurring at t = t0 is

F(t) = F + �FUs(t − t0).

The input–output equation can be rewritten in the form

mv̇ + bv = F + �FUs(t − t0).

The general expression for the step response of a first-order model given by Eq. (4.30)

can be used here but it has to be modified to reflect the initial time as t0, rather than as 0.

The modified form of Eq. (4.30) is

y(t) = yss − (yss − y0)e− (t−t0)

� ,

or, when velocity v(t) is substituted as the output variable,

v(t) = vss − (vss − v0)e− (t−t0)

� ,

with the general form of the solution known, the problem is reduced to finding three

unknowns in the preceding equation: initial velocity v0, steady-state velocity vss, and time

constant � . The initial velocity resulting from a constant initial force F can be found from

the input–output equation when both velocity and force are made constant and equal to

their respective initial values:

mv̇0 + bv0 = F .

The first term on the left-hand side is zero and thus the initial velocity is

v0 =
F

b
.

One can find the steady-state velocity of the mass by taking limits of both sides of the

input–output equation for time approaching infinity:

lim
t→∞

(mv̇ + bv) = lim
t→∞

[

F + �FUs(t − t0)
]

,

92 Analytical Solutions of System Input–Output Equations

and hence

m lim
t→∞

v̇ + b lim
t→∞

v = F + �F.

Because the velocity reaches a constant value of vss for time approaching infinity, the first

term on the left-hand side is zero and thus the steady-state velocity is

vss =
(F + �F)

b
.

The time constant, defined by Eq. (4.21), is

� =
m

b
.

Substituting the expressions found for the three unknowns into the general form of the

solution gives

v(t) =
(F + �F)

b
−

[

(F + �F)

b
−

F

b

]

e−(b/m)(t−t0),

and hence

v(t) =
F

b
+

(
�F

b

)
[

1 − e−(b/m)(t−t0)
]

.

It should also be noted that the steady-state gain for this system, defined by Eq. (4.33),

is

K =
1

b
.

With the steady-state gain, the velocity of the mass for t > t0 can be expressed in yet

another form:

v(t) = K
[

F + �F
(

1 − e
t−t0

�

)]

.

The response of acceleration for t > t0 can be obtained by differentiation of the velocity

step response :

a(t) =
(

�F

m

)

e−(b/m)(t−t0) =
(

K

�

)

�Fe− (t−t0)

� .

Both the velocity and acceleration step response curves are plotted in Fig. 4.8.

A conclusion from these considerations is that a step response of a first-order model

is always an exponential function of time involving three parameters: initial value, steady-

state value, and time constant. If the initial value is specified in the problem statement,

the other two parameters can be found simply by inspection of the model input–output

equation, by use of the relations defined in Eqs. (4.21) and (4.29). A step response of a first-

order model can thus be found in a very simple manner, without solving the differential

equation.

4.4 SECOND-ORDER MODELS

An input–output equation for a stationary, linear second-order model is

a2 ÿ + a1 ẏ + a0 y = f (t). (4.53)

4.4. Second-Order Models 93

Figure 4.8. (a) Velocity and (b) acceleration step response curves of the system considered in
Example 4.1.

The initial conditions are

y(0) = y0, ẏ(0) = ẏ0. (4.54)

The characteristic equation is

a2 p2 + a1 p + a0 = 0. (4.55)

4.4.1 Free Response

The form of the homogeneous solution representing the system free response

depends on whether the two roots of the characteristic equation [Eq. (4.55)], p1

and p2, are distinct or identical. If the roots are distinct, p1 �= p2, the homogeneous

solution is of the form

yh(t) = C1ep1t + C2ep2t . (4.56)

If the roots are identical, p1 = p2, the free response is

yh(t) = C1ep1t + C2tep1t . (4.57)

If the roots are complex, they occur as pairs of complex-conjugate numbers, i.e.,

p1 = a + jb, p2 = a − jb. (4.58)

94 Analytical Solutions of System Input–Output Equations

Substitution of these expressions for the complex roots into Eq. (4.56) yields the

homogeneous solution for this case:

yh(t) = C1e(a+ jb)t + C2e(a− jb)t , (4.59)

or use of the trigonometric forms of the complex numbers gives

yh(t) = C1eat (cos bt + j sin bt) + C2eat (cos bt − j sin bt)

= eat (C3 cos bt + C4 sin bt), (4.60)

where the constants C3 and C4 are a different, but corresponding, set of integration

constants:

C3 = C1 + C2, (4.61)

C4 = j(C1 − C2). (4.62)

Note that, if the roots of the characteristic equation are complex, C1 and C2 are also

complex-conjugate numbers, but C3 and C4 are real constants.

The model free response has been shown to depend on the type of roots of

the model characteristic equation, and for a second-order model the free response

takes the form of Eq. (4.56), Eq. (4.57), Eq. (4.59) or (4.60) if the roots are real

and distinct, real and identical, or complex conjugate, respectively. Moreover, the

character of the free response depends on whether real roots or real parts of complex

roots are positive or negative. Table 4.2 illustrates the effect of location of the roots

in a complex plane on the model impulse response.

Several general observations can be made on the basis of Table 4.2. First, it can be

seen that the impulse response of a second-order model is oscillatory when the roots

of the model characteristic equation are complex and nonoscillatory when the roots

are real. Furthermore, the impulse response approaches zero as time approaches

infinity only if the roots are either real and negative or complex and have negative

real parts. The systems that have all the roots of their characteristic equations located

in the left-hand side of a complex plane are referred to as stable systems. However,

if at least one root of the model characteristic equation lies in the right-hand side

of a complex plane, the model impulse response grows without bound with time;

such a system is considered unstable. Marginal stability occurs when there are no

roots in the right-hand side of a complex plane and at least one root is located on

the imaginary axis. System stability constitutes one of the most important problems

in analysis and design of feedback systems and will be treated more thoroughly in

Chap. 13.

Two important parameters widely used in characterizing the responses of second-

order systems are the damping ratio � and the natural frequency �n. These two

parameters appear in the modified input–output equation

ÿ + 2��n ẏ + �2
n y =

1

a2
f (t). (4.63)

The damping ratio � represents the amount of damping in a system, whereas the

natural frequency �n is a frequency of oscillations in an idealized system with zero

4.4. Second-Order Models 95

Table 4.2. Locations of roots of characteristic equations and the corresponding

impulse response curves

damping. In other words, because the amount of damping is related to the rate of

dissipation of energy in the system, �n represents the frequency of oscillations in an

idealized system that does not dissipate energy.

The input–output equation [Eq. (4.53)] can be rewritten in the following form:

ÿ + (a1/a2)ẏ + (a0/a2)y = (1/a2) f (t). (4.64)

96 Analytical Solutions of System Input–Output Equations

By comparing Eqs. (4.63) and (4.64), one can express the natural frequency and the

damping ratio in terms of the coefficients of the input–output equation:

�n =
√

a0

a2
, (4.65)

� =
a1

2
√

a0a2
. (4.66)

The system characteristic equation is

p2 + 2��n p + �2
n = 0. (4.67)

The roots of the characteristic equation can be expressed in terms of the coefficients

a0, a1, and a2,

p1, p2 =

[

−a1 ±
√

(

a2
1 − 4a0a2

)
]

2a2
, (4.68)

or, equivalently, in terms of � and �n for the underdamped case,

p1, p2 = −��n ± j�n

√

1 − � 2, (4.69)

or, similarly, in terms of �1 and �2 for the overdamped case,

p1, p2 = −1/�1, −1/�2, (4.70)

where

�1, �2 =
2a2

[

a1 ±
√

(

a2
1 − 4a0a2

)
] . (4.71)

It was pointed out earlier that a system is stable if real parts of the complex roots of

the characteristic equation are negative, that is, if

Re [p1] = Re [p2] = −��n < 0. (4.72)

Because the natural frequency is not negative, for stability of a second-order system

the damping ratio must be positive so that � > 0. From Eqs. (4.66) and (4.69) it can

be deduced that the roots are complex; thus the system response is oscillatory if

0 < � < 1. (4.73)

A system is said to be underdamped when the damping ratio satisfies condition (4.73).

The frequency of oscillation of an underdamped system is called a damped natural

frequency and is equal to

�d = �n

√

1 − � 2. (4.74)

If the damping ratio is equal to or greater than 1, the expressions on the right-hand

side of Eq. (4.69) become real, and thus the system free response is nonoscillatory. A

system for which the damping ratio is greater than 1 is referred to as an overdamped

system. The damping is said to be critical if the damping ratio is equal to 1.

4.4. Second-Order Models 97

Figure 4.9. Pair of complex roots and corresponding
values of � , �n, and �d.

Table 4.2 shows how the nature of the system impulse response depends on

the locations of roots of the characteristic equation. In addition, the dynamics of a

second-order model can be uniquely described in terms of the natural frequency and

the damping ratio. Therefore the conclusion can be drawn that there must exist a

unique relationship between pairs of roots of the characteristic equation and pairs

of �n and � values. To determine this relationship, consider a second-order model

having two complex roots, p1 and p2, located as shown in Fig. 4.9.

The real parts of both roots are

Re [p1] = Re [p2] = −��n (4.75)

and the imaginary parts are

Im [p1] = �n

√

1 − � 2 = �d, (4.76)

Im [p2] = �n

√

1 − � 2 = −�d. (4.77)

The damped natural frequency is therefore equal to the ordinates of the points

p1 and p2 with a plus or minus sign, respectively. To identify a corresponding natural

frequency �n, consider the distance d between the points p1 and p2 and the origin.

In terms of the real and imaginary parts of the two roots, d can be calculated as

d =
√

(Re [p1])2 + (Im [p1])2

=
√

(Re [p2])2 + (Im [p2])2. (4.78)

Substituting the expressions for the real and imaginary parts of p1 and p2 from

Eqs. (4.75), (4.76), and (4.77) yields

d = �n. (4.79)

98 Analytical Solutions of System Input–Output Equations

Figure 4.10. Loci of constant natural frequency.

The natural frequency of a second-order underdamped system is thus equal to the

distance between the locations of the system characteristic roots and the origin of

the coordinate system in the complex plane.

Finally, by a comparison of Eqs. (4.75) and (4.79), the damping ratio can be

expressed as

� = −Re [p1] /d, (4.80)

which, after inspection of Fig. 4.9, can be rewritten as

� = cos �, (4.81)

where � is the acute angle measured from the negative real axis.

The results of the preceding considerations are presented graphically in Figs.

4.10, 4.11, and 4.12. Figure 4.10 shows loci of constant natural frequency. The loci are

concentric circles with radii proportional to �n. The farther from the origin of the

coordinate system the roots of the characteristic equation are, the higher the value

of the corresponding natural frequency.

In Fig. 4.11 the horizontal lines represent loci of constant damped natural fre-

quency. The greater the distance between the roots of the characteristic equation and

the real axis, the higher the value of wd.

The loci of constant damping ratio for an underdamped system, shown in

Fig. 4.12, take the form of straight lines described by Eq. (4.81). Practically, the

use of the damping ratio is limited to stable systems having both roots of the char-

acteristic equation in the left-hand side of a complex plane, and the loci in Fig. 4.12

represent only stable underdamped systems. When the system is overdamped, the

roots lie along the real axis, and there is no oscillation in the response.

4.4.2 Step Response

A step response equation for a second-order model is now derived for the three cases

of an underdamped, a critically damped, and an overdamped system.

4.4. Second-Order Models 99

Figure 4.11. Loci of constant damped natural frequency.

The input–output equation for the system subjected to a step input of magnitude

A is

a2 ÿ + a1 ẏ + a0 y = AUs(t). (4.82)

Both initial conditions are zero, y(0) = 0 and ẏ(0) = 0.

Underdamped case, 0 < � < 1. The input–output equation in a parametric

form [shown in Eq. (4.63)] is

ÿ + 2��n ẏ + �2
n y = (A/a2)Us(t). (4.83)

The characteristic equation is

p2 + 2��n p + �2
n = 0. (4.84)

For 0 < � < 1, Eq. (4.84) has two complex-conjugate roots,

p1 = −��n − j�d, (4.85)

p2 = −��n + j�d, (4.86)

Figure 4.12. Loci of constant damping ratio.

100 Analytical Solutions of System Input–Output Equations

where �d is defined by Eq. (4.74). The general form of the homogeneous solution

is given by Eq. (4.60). Substituting real and imaginary parts of p1 and p2 from Eqs.

(4.85) and (4.86) yields

yh(t) = e−��nt (C3 cos �dt + C4 sin �dt), (4.87)

where C3 and C4 are unknown real constants. The particular solution for a unit step

input, in accordance with Eq. (4.12), is

yp(t) =
A

a2�2
n

=
A

a0
, (4.88)

or, by use of the definition of the steady-state gain given by Eq. (4.33),

yp(t) = KA. (4.89)

The complete solution is a sum of the right-hand sides of Eqs. (4.87) and (4.89):

y(t) = KA+ e−��nt (C3 cos �dt + C4 sin �dt). (4.90)

By use of the initial conditions, the two constants C3 and C4 are found:

C3 = −KA, (4.91)

C4 = −
KA�

√

1 − � 2
. (4.92)

Hence the step response of an underdamped second-order model is

y(t) = KA

[

1 − e−��nt

(

cos �dt +
�

√

1 − � 2
sin �dt

)]

. (4.93)

Critically damped case, � = 1. One can find the step response in this case simply

by taking a limit of the right-hand side of Eq. (4.93) for � approaching unity, which

yields

y(t) = KA
[

1 − e−�nt (1 + �nt)
]

. (4.94)

One can also obtain the same result by following the general procedure for solving

linear differential equations presented in Section 4.2. The characteristic equation in

this case has a double root:

p1 = p2 = −�n. (4.95)

The general form of the homogeneous solution, as given in Eq. (4.10), is

yh(t) = C1e−�nt + C2te−�nt . (4.96)

The particular solution for a step input is, as before,

yp(t) = KA, (4.97)

and hence the complete solution is

y(t) = KA+ C1e−�nt + C2te−�nt . (4.98)

4.4. Second-Order Models 101

By use of the initial conditions, y(0) = 0 and ẏ(0) = 0, the integration constants are

found to be

C1 = −KA, (4.99)

C2 = −�nKA. (4.100)

Substitution of the expressions for the constants C1 and C2 into Eq. (4.98) yields the

complete solution obtained earlier, Eq. (4.94).

Overdamped case, � > 1. When � > 1, the characteristic equation [Eq. (4.84)]

has two distinct real roots given by Eq. (4.68). The homogeneous solution takes the

form

yh(t) = C1e−t/�1 + C2e−t/�2 . (4.101)

The particular solution for a step input of magnitude A is

yp(t) = KA. (4.102)

Combining Eqs. (4.101) and (4.102) gives the complete solution:

y(t) = KA+ C1e−t/�1 + C2e−t/�2 . (4.103)

The integration constants are found by use of the zero initial conditions:

C1 = KA
�1

(�1 − �2)
, (4.104)

C2 = KA
�2

(�1 − �2)
. (4.105)

The complete solution for a step response of an overdamped second-order model is

y(t) = KA

[

1 −
1

(�1 − �2)
(�1e−t/�1 − �2e−t/�2)

]

. (4.106)

A family of step response curves for a second-order model with zero initial

conditions normalized with respect to the steady-state gain is plotted in Fig. 4.13 for

different values of the damping ratio and the same natural frequency.

A dynamic behavior of a second-order model described by Eq. (4.82) can also

be described in terms of selected specifications of the model step response. Figure

4.14 shows the most common specifications of a step response of an underdamped

second-order model with zero initial conditions, although the the use of these step

response specifications is not limited to a single type of model.

The period of oscillations Td is related to the damped natural frequency by

Td =
2�

�d
. (4.107)

102 Analytical Solutions of System Input–Output Equations

Figure 4.13. Unit step response curves of a second-order model.

The peak time tp is the time between the start of the step response and its first

maximum. It is equal to half of the period of oscillations:

tp =
�

�d
. (4.108)

The peak time is a measure of the speed of response of an underdamped system. For a

critically damped or overdamped system, the speed of response is usually represented

by a delay time or a rise time.

Figure 4.14. Parametric specifications of a step response of an underdamped second-order model.

4.4. Second-Order Models 103

The delay time td is the time necessary for the step response to reach a point

halfway between the initial value and the steady-state value, which can be expressed

mathematically as

y(t)
∣
∣
t=td

= 0.5 [yss − y(0)] + y(0). (4.109)

The rise time tr is the time necessary for the step response to rise from 10 percent

to 90 percent of the difference between the initial value and the steady-state value.

Settling time ts is defined as the time required for the step response to settle

within a specified percentage of the steady-state value. A 2 percent settling time is

the time for which the following occurs:

∣
∣y(t) − yss

∣
∣ ≤ 0.02[yss − y(0)], for t ≥ ts. (4.110)

An oscillatory character of a system step response is represented by a maximum

overshoot MP, defined as

MP =
ymax − yss

yss − y(0)
. (4.111)

A percent maximum overshoot, M%
P is used more often.

M%
P =

[
ymax − yss

yss − y(0)

]

100%. (4.112)

For a second-order model, the percentage of maximum overshoot can be expressed

as a function of the damping ratio:

M%
P = 100e

− ��√
1−�2 . (4.113)

This relationship is presented in graphical form in Fig. 4.15.

Another useful specification of the transient response of an underdamped

second-order system is a decay ratio (DR), defined as the ratio of successive

Figure 4.15. Maximum percentage of over-
shoot versus damping ratio.

104 Analytical Solutions of System Input–Output Equations

amplitudes of the system step response. Referring to Fig. 4.14, we find that the DR

can be expressed as

DR =
[

y(tp + Td) − yss

]

[

y(tp) − yss

] . (4.114)

For a system described by Eq. (4.83), the DR can be related to the damping ratio by

the formula

DR = e
− 2��√

1−�2 . (4.115)

A logarithmic DR (LDR) is sometimes used instead of the DR, where

LDR = ln(DR) =
−2��

√

1 − � 2
. (4.116)

The DR is useful in determining the system damping ratio from the system oscillatory

step response.

EXAMPLE 4.2

In the system shown in Fig. 4.16(a), mass m = 9 kg is subjected to force F(t) acting

vertically and undergoing a step change from 0 to 1.0 N at time t = 0. The mass, suspended

on a spring of constant k = 4.0 N/m, is moving inside an enclosure with a coefficient of

friction between the surfaces of b = 4.0 N s/m. Using force F(t) as the input variable and

the position of mass x(t) as the output variable, sketch an approximate step response of

the system. If this response is oscillatory, determine the necessary modification to make

the system critically damped.

SOLUTION

The input–output equation of the system is

mẍ + bẋ + kx = F(t).

Figure 4.16. (a) Original system considered in Example 4.2 and (b) the system unit step response.

4.4. Second-Order Models 105

Substitution of the numerical values for the system parameters yields

9ẍ + 4ẋ + 4x = F(t).

From Eq. (4.66), the damping ratio is

� =
4

2
√

(9)(4)
= 0.3333.

Because � < 1, the system step response will be oscillatory. Other step response specifi-

cations useful in sketching the step response curve can be determined from Eqs. (4.65),

(4.74), (4.107), and (4.113) as follows:

�n =
√

4/9 = 0.6667 rad/s,

�d = 0.6667
√

1 − 0.33332 = 0.6286 rad/s,

Td = 10.0s,

M%
p = 100e

− �0.3333√
1−0.33332 = 32.94%.

Given these parameters, the step response can be sketched as shown in Fig. 4.16(b).

To make the system critically damped, another damper, bad’ is added, as shown in

Fig. 4.17(a). The input–output equation of the modified system is

9ẍ + (4 + bad)ẋ + 4x = F(t).

The damping ratio is now given by

� =
(4 + bad)

2
√

4 − 9
.

For critical damping, the term on the right-hand side of the preceding equation must

be equal to 1.0, which yields the value of additional damping, bad = 8 N s/m. The step

response curve of the system with additional damping is shown in Fig. 4.17(b).

Figure 4.17. (a) Modified system from Example 4.2 and (b) the system unit step response.

106 Analytical Solutions of System Input–Output Equations

4.5 THIRD- AND HIGHER-ORDER MODELS

Theoretically, the analysis of linear models of third and higher orders should be noth-

ing more than a simple extension of the methods developed for first- and second-

order models, presented in earlier sections. Practically, however, methods that are

fast and easy to use with lower-order models become excessively involved and cum-

bersome in applications involving third- and higher-order models. One can obtain

an analytical solution of an nth-order input–output equation for a linear, station-

ary model by simply following the same general procedure described in Section 4.2;

however, the algebra involved in the solution is considerably more complex. First-

and second-order linear differential equations are not only easy to solve analytically

but in addition, the parameters used in these equations have straightforward physi-

cal meanings, which allow evaluation of general system characteristics even without

solving the model equation. The physical meanings of the parameters in third- and

higher-order model equations are considerably less clear and more difficult to inter-

pret in terms of the system dynamic properties.

Another apparently insignificant problem occurs in obtaining the homogeneous

solution, which requires determination of the roots of a third- or higher-order char-

acteristic equation. There are many computer programs for solving higher-order

algebraic equations; however, in such situations the following question arises: If it

becomes necessary to use a computer to solve part of a problem (find roots of a

characteristic equation), wouldn’t it be worthwhile to use the computer to solve the

entire problem (find the solution of an input–output equation)?

Computer programs for solving linear differential equations, or rather for solving

equivalent sets of first-order equations, are almost as readily available and easy to use

as the programs for finding roots of a characteristic equation. Some of these programs

are described in Chap. 6. Generally speaking, the higher the order of the input–output

equation, the more justified and more efficient the use of a computer. As has been

and still will be stressed throughout this text, however, it is always necessary to verify

the computer-generated results with a simple approximate analytical solution. In this

section, the concept of the so-called dominant roots of a characteristic equation is

presented. The dominant roots are very useful in obtaining approximate solutions of

third- or higher-order differential equations.

The general form of a homogeneous solution of an nth-order differential equa-

tion having m distinct and n – m multiple roots, presented in Section 4.2, is

yh(t) =
m

∑

i=1

Ci e
pi t +

n
∑

i= m+1

Ci t
i−m−1epi t . (4.117)

If a system is stable, all roots p1, p2, . . . , pn are real and negative or complex and

have negative real parts. The rate at which the exponential components on the

right-hand side of Eq. (4.117) decay depends on the magnitudes of the real parts

of p1, p2, . . . , pn. The larger the magnitude of a negative real root and/or the larger

the magnitude of a negative real part of a complex root, the faster the decay of the

corresponding exponential terms in the model free response. In other words, the

roots of the characteristic equation located farther from the imaginary axis in

4.5. Third- and Higher-Order Models 107

the left half of the complex plane affect the model free response relatively less than

do the roots closer the imaginary axis. The roots of the characteristic equation nearest

the imaginary axis in the complex plane are called the dominant roots.

The concept of dominant roots is now illustrated in an example of a third-order

model.

The model differential input–output equation is

a3
d3 y

dt3
+ a2

d2 y

dt2
+ a1

dy

dt
+ a0 y = f (t). (4.118)

The model is assumed to have distinct, real, and negative roots, p1, p2, p3, with the

last root, p3, being much farther away from the imaginary axis of the complex plane

than p1 and p2, so that

|p3| ≫ |p1| , |p3| ≫ |p2| . (4.119)

The model equation can be rewritten as follows:

d3 y

dt3
− (p1 + p2 + p3)

d2 y

dt2
+ (p1 p2 + p1 p3 + p2 p3)

dy

dt

− p1 p2 p3 y =
1

a3
f (t). (4.120)

Hence the characteristic equation is

p3 − (p1 + p2 + p3)p2 + (p1 p2 + p1 p3 + p2 p3)p − p1 p2 p3 = 0. (4.121)

Dividing both sides of the characteristic equation by p3 yields

(
1

p3

)

p3 −
(

p1

p3
+

p1

p3
+ 1

)

p2 +
(

p1 p2

p3
+ p1 + p2

)

p − p1 p2 = 0. (4.122)

The terms having p3 in the denominator can be neglected, based on assumptions

(4.119), to yield the following approximation of the characteristic equation:

p2 − (p1 + p2)p + p1 p2 = 0. (4.123)

The corresponding differential equation, with the right-hand side term as in Eq.

(4.120), is

d2 y

dt2
− (p1 + p2)

dy

dt
+ p1 p2 y =

1

a3
f (t). (4.124)

Although the left-hand side of this equation was derived to approximate the dynamics

of the system described by Eq. (4.118), it can be seen that the steady-state behavior

of the approximating model does not match the steady-state performance of the

original system. The steady-state response of the original system for the forcing

function reaching a constant value fss is

yss = −
1

p1 p2 p3a3
fss, (4.125)

108 Analytical Solutions of System Input–Output Equations

and the steady-state response of the approximating second-order system described

by Eq. (4.124) is

yss =
1

p1 p2a3
fss. (4.126)

To eliminate this discrepancy, we must adjust (calibrate) the approximating model to

match the steady-state performance of the original system by dividing the right-hand

side of Eq. (4.124) by (−p3) to obtain

d2 y

dt2
− (p1 + p2)

dy

dt
+ p1 p2 y = −

1

p3a3
f (t). (4.127)

The division of the right-hand side by a constant has no effect on the characteristic

equation of the system, so the dynamic performance of the system remains the same,

but the steady-state performance of the approximating model given by Eq. (4.127)

matches exactly the response of the original system described by Eq. (4.118).

It should be noted that, although in deriving approximating equation (4.127)

it was assumed that all three roots of the characteristic equation were real negative

numbers, it can be shown that the approximation is just as good if the dominant roots,

p1 and p2, are complex-conjugate numbers. In general, the approximation improves

as the distance between the dominant roots, p1 and p2, and the other root, p3, mea-

sured in a horizontal direction in the complex plane, increases. This is illustrated in

Fig. 4.18, which shows the step response curves of three third-order systems hav-

ing the same pair of dominant roots, p1 and p2, (−1 ± 4j) but a different value of

the third root, p3. The figure also shows the step response of a second-order system

with the dominant roots only. The input–output equations for the four systems along

with the values of the roots of their characteristic equations are shown in Table 4.3.

0 1 2 3 4 5
0

0.5

1

1.5
System a (2nd-order)

System d (p3 = −20)

System b (p3 = −2)

System c (p3 = −6)

Time (s)

A
m

p
li

tu
d

e

Figure 4.18. Step responses of three third-order system (b, c, d) with the same dominant roots and
different third root and a second-order system with the dominant roots only (system a).

4.6. Synopsis 109

Table 4.3. Equations and roots of three third-order systems and an approximating

second-order system based on dominant roots

System Input–output equation p1 p2 p3

a ÿ + 2ẏ + 17y = u −1 + 4j −1 – 4j −
b ¨ẏ + 4ÿ + 21ẏ + 34y = 2u −1 + 4j −1 – 4j −2
c ¨ẏ + 8ÿ + 29ẏ + 102y = 6u −1 + 4j −1 – 4j −6
d ¨ẏ + 22ÿ + 57ẏ + 340y = 20u −1 + 4j −1 – 4j −20

It can be seen that the step response of the second-order system based on dominant

roots gets closer to the step response of a third-order system as the third “nondom-

inant” root moves further away from the dominant roots. That nondominant root,

which is a negative real number in this case, corresponds to a time constant equal to

a negative inverse of the root:

� = −
1

p3
.

For system b, p3 = −2, which is very close to the dominant roots (which are

not really dominant here!), and the corresponding time constant, � = 0.5 s, has a

strong damping effect on the step response. For systems c and d, the time constants

corresponding to root p3 are 0.1667 and 0.05 s, respectively. These smaller time

constants have considerably weaker impact on the system step response.

In summary, the second-order system based on dominant roots (system a) is not a

good approximation of system b but appears to be a reasonably good approximation

of system c and a very good approximation of system d.

The simplification procedure just described should be used with caution because

it leads to a system model that may be deficient in some applications. For instance,

the small time constant associated with the rejected root p3, �3 = – l/p3, may still be

significant in some closed-loop systems that use high-gain feedback.

In addition to simplifying the analysis, the rejection of a nondominant root (or

roots) makes it easier to run a check solution on the computer and verify it before

proceeding with the more complete model when it is required.

4.6 SYNOPSIS

This chapter reviewed the classical methods frequently used to solve for the dynamic

responses of linear systems modeled by ODEs. Greater emphasis was placed on

finding the responses of first- and second-order systems to step inputs; however,

responses to nonequilibrium initial conditions (so-called free response) and impulse

response were also covered.

In each case the solution was shown to be of the form

y(t) = yp(t) + yh(t),

where yp(t) is the particular or forced part of the response, usually having the same

form as the input, its derivatives, or both, and yh(t) is the homogeneous or natural

110 Analytical Solutions of System Input–Output Equations

part of the response consisting of exponential terms that uses the roots of the system

characteristic equation.

Thus the solution for a first-order system is

y(t) = yp(t) + C1ept = yp(t) + C1e−t/� .

where p = −l/� is the single root of the first-order characteristic equation. The con-

stant C1 is then found by use of the initial condition equation with the values of the

particular part, the homogeneous part, and the output at t = 0,

y(0) = yp(0) + C1e0

or

C1 = y(0) − yp(0).

For a second-order characteristic equation of the form

a2 p2 + a1 p + a0 = 0,

the roots may be real or conjugate complex. For the underdamped case, the complex-

conjugate roots, involving the undamped natural frequency and damping ratio, are

expressed by Eq. (4.68). For the overdamped and critically damped cases, the real

roots, involving two time constants �1 and �2, are expressed by Eq. (4.71).

The solution for a second-order system is of the form

y(t) = yp(t) + yh(t) = yp(t) +

⎧

⎨

⎩

e−��nt (C3 cos �dt + C4 sin �dt), 0 < � < 1

C1ep1t + C2tep1t , � = 1

C1ep1t + C2ep2t , � > 1

,

where �n, �, and �d = �n

√

1 − � 2 are the undamped natural frequency, the damping

ratio, and the damped natural frequency, respectively, of an underdamped (0 < � < 1)

system having complex-conjugate roots, p1 repeated are the identical roots of a crit-

ically damped (� = 1) system, and p1 = −1/� 1 and p2 = −1/� 2 are the real roots of

an overdamped (�>1) system.

To assess each new situation as it as arises, solving first for � = a1/(2
√

a0a2)

determines immediately which case is to be dealt with. Then, when yp(t) has been

determined from the form of the forcing function, the constants C1 and C2 or C3 and

C4 are readily determined from the two initial condition equations [Eqs. (4.54)].

The greatest emphasis was placed on first- and second-order systems in order to

simplify the illustration of the classical method of solving differential equations. In

addition, first-and second-order models exhibit the major features encountered in

the responses of higher-order systems: exponential decay with time constant/s and/or

oscillatory response with decaying amplitude of oscillation, which are also present

in the responses of third- and higher-order systems. Having a good understanding of

first-and second-order system response behavior facilitates the verification of com-

puter simulations and the “debugging” of computer programs when they are being

developed for computer simulation.

Use of a simplified model that uses only the dominant roots of a higher-

order system makes it possible to uncover the most significant dynamic response

Problems 4.1–4.6 111

characteristics of the higher-order model through use of a lower-order model. Also,

running a reduced-order check solution as part of a simulation study helps to find

program errors and “glitches” that seem to plague even the most experienced pro-

grammers. Once this simplified model is running properly on the computer, it is

usually a simple matter to reinsert the less-dominant roots and then to produce a

“full-blown” solution that includes all of the higher-order effects inherent in the

higher-order system differential equation model of the system.

PROBLEMS

4.1 A first-order model of a dynamic system is

2ẏ + 5y = 5 f (t).

(a) Find and sketch the response of this system to the unit step input signal f (t) = Us(t),

for y(0) = 2.

(b) Repeat part (a) for zero initial condition y(0) = 0.

(c) Repeat part (a) for a unit impulse input f (t) = Ui (t).

(d) Repeat part (b) for a unit impulse input f (t) = Ui (t).

4.2 The roots of a second-order model are p1 = −1 + j and p2 = −1 − j .

(a) Find and sketch the system unit step response assuming zero initial conditions, ẏ(0) =
0 and y(0) = 0.

(b) Repeat part (a) for the roots of the characteristic equation, p1 = 1 + j and p2 =
1 − j . Explain the major difference between the step responses found in parts (a)

and (b).

4.3 A rotational mechanical system has been modeled by the equation

J �̇ + B� = T(t).

Determine the values of J and B for which the following conditions are met:

◦ Steady-state rotational velocity for a constant torque, T(t) = 10 N m, is 50 rpm (revo-

lutions per minute).

◦ The speed drops below 5% of its steady-state value within 160 ms after the input torque

is removed, T(t) = 0.

4.4 Output voltage signals y1(t) and y2(t) of two linear first-order electrical circuits were

measured, as shown in Figs. P4.4(a) and P4.4(b). Write analytical expressions describing

the two signals.

4.5 A mass m = 1.5 lb s2/ft sliding on a fixed guideway is subjected to a suddenly applied

constant force F(t) = 100 lb at time t = 0. The coefficient of linear friction between the

mass and the guideway is b = 300 lb s/ft. Find the system time constant. Write the system

model equation and solve it for the response of mass velocity v as a function of time,

assuming v(0) = 0. Sketch and label the system response versus time.

4.6 The electric generator in the steam turbine drive system shown in Fig. P4.6 has

been running steadily at speed (�1)0 with a constant input steam torque, Tsteam. At time

t = t0, the shaft, which has a developing fatigue crack, breaks suddenly. This problem is

112 Analytical Solutions of System Input–Output Equations

Figure P4.4. Output signals considered in Problem 4.4.

Figure P4.6. Steam turbine drive system considered in Problem 4.6.

concerned with how the speed �1 varies with time after the shaft breaks (what happens

to the generator is of no concern here).

(a) Find the steady torque (Tg)0 in the shaft before the shaft breaks.

(b) Find the time constant of the remaining part of the system to the left of the crack for

t > t0.

(c) Determine the initial condition �1(t0).

(d) Solve for the response �1(t) for t > t0 and sketch the response.

(e) Determine how long it takes (in terms of the system time constant) for �1(t) to reach

a 5% overspeed condition.

4.7 A first-order system is modeled by the equation

ẏ(t) = ay(t) + bf (t).

Problems 4.7–4.12 113

With the system initially at rest, a unit step input f (t) = Us(t) is applied. Two measure-

ments of the output signal are taken:

y(0.5) = 1.2, lim
t→∞

y(t) = 2.0.

Find a and b.

4.8 A mechanical system is described by the following set of state-variable equations:

q̇1 = −6q1 + 2q2,

q̇2 = −6q2 + 5 f.

The state variable q1 is also the output variable. Sketch a unit step response of this system.

4.9 The mechanical device shown schematically in Fig. P4.9 is used to measure the coef-

ficient of friction between a rubber shoe and a pavement surface. The value of mass m is

4 kg, but the value of the spring constant is not exactly known. In a measuring procedure,

mass m is subjected to force F(t), which changes suddenly from 0 to 10 N at time t = 0.

The position of the mass, x(t), is recorded for t ≥ 0. From the system step response curve

recorded as shown in Fig. P4.9, find the unknown system parameters k and b.

Figure P4.9. Friction-measuring device and its step response curve.

4.10 Consider again the mechanical device shown in Fig. P4.9 but with mass m of 5 kg.

The response of this system to a step change in force F(t) was found to be very oscillatory

(Fig. P4.10). The only measurements obtained were two successive amplitudes, A1 and

A2, equal to 55 and 16.5 cm, respectively, and the period of oscillation Td equal to 1 s.

Determine the values of the spring constant k and the coefficient of friction b in this case.

4.11 For each of the three mechanical systems shown in Figs. P4.11(a), P4.11(b), and

P4.11(c), do the following:

(a) Derive an input–output equation.

(b) Write an expression for the unit step response.

(c) Sketch and carefully label the unit step response curve.

4.12 An input–output model of a third-order system was found to be

¨ẏ + 12ÿ + 25ẏ + 50y = f (t).

The system step response for f (t) = 50Us(t) is plotted in Fig. P4.12. Compute the roots

for this third-order system and then find an approximating second-order model for this

system by using the dominant roots of the third-order model. Sketch the response of

114 Analytical Solutions of System Input–Output Equations

Figure P4.10. Step response curve of the device considered in Problem 4.10.

the approximating second-order model to input f (t) = 50 Us(t) and compare it with the

curve shown in Fig. P4.12.

4.13 A schematic of the mechanical part of a drive system designed for use in a drilling

machine is shown in Fig. P4.13. The driving torque Tm supplied by an electric motor

is applied through a gear reduction unit having ratio R1/R2 to drive a drilling spindle

represented here by mass ms . The gears’ moments of inertia are J1 and J2 and their

equivalent coefficient of rotational friction is Beq. The spindle is suspended on air bearings

of negligible friction, and it is pulled by a steel cable, which is assumed to be massless and

has a spring constant ks .

To examine the basic dynamic characteristics of the mechanical part of the system,

the motor was shut off, Tm = 0, and an impact force Fimp was applied to the spindle. The

Figure P4.11. Mechanical systems considered in Problem 4.11.

Problems 4.12–4.14 115

Figure P4.12. Step response of the third-order system considered in Problem 4.12.

response of the system, measured as the position x(t) of the spindle, was found to be

excessively oscillatory. To identify the source of this oscillation, determine the locations

of the roots of the system characteristic equation and suggest how the system parameters

should be changed, relative to their values during the test, to provide more damping.

Hint: Find approximate analytical expressions for the real roots and/or � and �n

associated with complex-conjugate roots. Assume that the one real root of the equation,

p3 + a2 p2 + a1 p + a0 = 0,

is approximated by p1 = −a0/a1.

4.14 Figure P4.14 shows a schematic of a mechanical drive system in which a servomotor

(inertia J1) drives a pinion gear (inertia J2, radius R) that is meshed with a rack (mass m).

The rack moves laterally against a spring element (k). The linear bearing that guides the

rack is well lubricated and produces a viscous friction effect (b). Assume that the shaft

between the motor (J1) and the gear (J2) is rigid.

(a) Use the values in the table for the parameters and solve for the poles of the system.

(b) Sketch the response of the system for a unit step input.

Figure P4.13. Mechanical part of the drive system considered in Problem 4.13.

116 Analytical Solutions of System Input–Output Equations

J1

J2

m, b
k

Ti, Ω1

x

Figure P4.14. Mechanical drive system.

(c) As a design engineer, how would you characterize the major effect of the radius on

the system performance?

(d) If the viscous friction (damping) factor could be adjusted, what value would lead to

a state of critical damping?

Parameter Value Units

J1 0.1 in. lbf s2

J2 0.05 in. lbf s2

R 3.0 in.

b 10.0 in. lbf s

m 0.05 lbf s2/in

k 1000.0 lbf/in

4.15 Sketch the step responses for systems with the following pole locations shown in

Fig. P4.15. Plot the four responses on the same time scale.

X X

X

X

X

X

X

X

(a)

(c)

(b)

(d)

Figure P4.15.

Problems 4.16–4.19 117

4.16 Consider the mechanical system sketched in Fig P4.16. It represents a motor driving

a heavy inertial load through a belt drive. The belt is flexible and is modeled as a torsional

spring. Also, the friction inherent in the motor is modeled as a linear damping factor

between the motor inertia and the ground. Develop a state model of this system and, for

the following values of the parameters, find the system poles and the steady-state gain of

this system

J1

J2

B

K

Ti,Ω

Ω

1

 2
Figure P4.16. Schematic of a mechanical drive system with two
inertias and compliant drive system between them.

Parameter Value Units

J1 2.0 kg m2

J2 5.0 kg m2

B 10.0 N s/m

K 20,000 N m/rad

4.17 Refer to Problem 2.10 and Fig. P2.10.

(a) Derive a state-space model of the system shown in Fig. P2.10.

(b) For the parameter values shown in Table P4.16, what are the values of the system

poles?

Parameter Value Units

m1 1.0 kg

m2 1.5 kg

k1 2500 N/m

k2 3500 N/m

b1 50 N s/m

b2 25 N s/m

a 0.1 m

b 0.2 m

(c) Using MATLAB, graphically represent how the poles of the system change as the

ratio of a/b changes through a range of values from 0.25 to 4.0

4.18 For the four systems shown in Fig. P4.18, find the frequencies at which the indicated

(with a ?) variables oscillate when the system is disturbed.

4.19 A simple mechanical system, shown in Fig. P4.19(a), is used to measure torque. The

equivalent inertia of the rotation parts of the system is 0.3 N m s2/rad. The spring and

viscous friction are both assumed to be linear, although the exact values of K and B are

unknown. An unknown constant torque T1 is suddenly applied at t = 0 after the system

has been at rest. The resulting angular displacement � is measured and recorded as shown

in Fig. P4.19(b).

118 Analytical Solutions of System Input–Output Equations

Figure P4.18.

Figure P4.19. (a) Schematic of torque measuring system and (b) step response to unknown torque.

Problems 4.19–4.20 119

(a) Find the values of K and B.

(b) Using the values of K and B from part (a), determine the input torque T1 that

produced the system response shown.

(c) How would you change the system parameters to reduce the maximum overshoot in

the system response without changing the steady-state relationship between torque

T1 and displacement �?

4.20 The roots of a system characteristic equation were found to be

p1 = −6.2 + j12.5,

p2 = −6.2 − j12.5,

p3 = −75.1.

(a) How many independent energy-storing elements are in the system?

(b) What are the approximate values of the maximum overshoot and period of oscillation

for this system?

(c) Derive the characteristic equation for this system.

5

Numerical Solutions of Ordinary

Differential Equations

LEARNING OBJECTIVES FOR THIS CHAPTER

5–1 To explain the fundamental principle of numerical integration as a finite sum of

approximate areas.

5–2 To implement simple numerical integration methods by use of MATLAB or a

similar computing platform.

5–3 To articulate the advantages of higher-order approximation methods and

adaptive-step-size algorithms as more accurate and more efficient methods for inte-

gration.

5–4 To recognize numerically stiff systems and use methods that alleviate the diffi-

culties that they present in computer solutions.

5.1 INTRODUCTION

For centuries, engineers and scientists have sought help from calculating machines

of all kinds in solving mathematical equations that model dynamic systems. A digital

computer, the most recent version of the calculating machine, has come a long way

from the more than 5000-year-old Babylonian abacus. Most engineers would prob-

ably prefer a computer to an abacus because of its superior computational power,

but both devices are capable of performing only those tasks that engineers already

know how to perform but either choose not to do, for some reason, or cannot do

because of lack of sufficient speed or memory or both. Despite today’s fascination

with computers, it is important to remember that they can do only what they are

programmed to do within their vast yet finite performance limits.

Generally speaking, correctness of computer results depends on two conditions:

the correctness of the formulation of the problem and the computational capability

of the computer to solve it. It does not seem widely recognized how often at least one

of these conditions is not met, leading to worthless computer results. Great care must

therefore always be taken in considering computer output. These authors’ advice is

never to accept computer results unless they can be fully understood and verified

against the basic laws of physics.

In previous chapters, it was shown how mathematical models of systems are

expressed in terms of ODEs. In particular, state-space representations take the form

of sets of first-order ODEs. It should come as no surprise that numerical solutions

of these equations are implemented by numerical integration of the first derivatives

120

5.2. Euler’s Method 121

of the state variables. Therefore numerical solutions of the responses of dynamic

systems are numerical integrations. In this chapter, the fundamental principles of

numerical integration are introduced.

In the next two sections, selected computer methods for solving ODEs are pre-

sented. In Section 5.2, the classical Euler’s method is described. The method of Euler

has more historical than practical significance today because of its large computa-

tional error. More accurate methods, including an improved Euler method and the

fourth-order Runge–Kutta method, are introduced in Section 5.3. In Section 5.4, the

issue of integration step size and its implication are discussed.

Section 5.5 extends the discussion of numerical methods to systems of differential

equations and discusses certain problems that may arise. In Section 5.6, the problems

associated with stiff systems, differential equations dealing with widely varying time

scales, are presented.

Numerical integration is the core technology of computer simulations. Chapter

6 describes the common features of computer simulation packages and introduces

Simulink, an extension of MATLAB that allows engineers to quickly produce com-

plex computer models with a graphical interface.

5.2 EULER’S METHOD

In 1768, Leonhard Euler, the most prolific mathematician of the 18th century, and

perhaps of all time, published the first numerical method for solving first-order dif-

ferential equations of the general form

dx

dt
= f (x, t), (5.1)

with an initial condition x(t0) = x0. Note that system state-variable equations

[Eq. (3.6)] as well as first-order input–output equations [Eq. (4.14)] can be pre-

sented in the form of Eq. (5.1). In the case of the input–output model, the dependent

variable is y and Eq. (5.1) becomes

dy

dt
= f (y, t) = −

(
a0

a1

)

y +
(

1

a1

)

f (t). (5.2)

The method proposed by Euler was based on a finite-difference approximation

of a continuous first derivative dx/dt that uses a formula derived by another great

mathematician, contemporary with Euler, Brook Taylor. Taylor’s approximation of

a first-order continuous derivative defined as

dx

dt
= lim

�t→0

[x(t0 + �t) − x(t0)]

�t
(5.3)

is

dx

dt
≈

[x(t0 + �t) − x(t0)]

�t
. (5.4)

122 Numerical Solutions of Ordinary Differential Equations

Figure 5.1. Geometric interpretation of Euler’s method.

Hence the estimate of the value of function x at time t0 + �t is

x(t0 + �t) ≈ x(t0) +
dx

dt

∣

∣

∣

∣

t0

�t. (5.5)

Substituting for dx/dt from Eq. (5.1) gives the solution approximation

x(t0 + �t) ≈ x(t0) + f (x0, t0)�t. (5.6)

Figure 5.1 shows a geometric interpretation of Euler’s method.

Figure 5.1 offers insight into the nature of the approximation that is made during

numerical simulation. The function being approximated, x(t), is extrapolated from

time t = t0 to t = t0 + �t with the assumption that the function is a straight line

during that time interval. Recall that the very form of Eq. (5.1) indicates that the

function f(x, t) is the slope of x(t). Hence Euler’s method for numerical integration

assumes that the slope of x(t) will remain constant at its value at t = t0 for the entire

integration interval. This is equivalent to using the first term of the Taylor’s series

approximation of the function and is therefore classified as a first-order method.

Approximation (5.6) provides a recursive algorithm for computation of x(t0 +

k�t), k = 1, 2, . . . , N. The Euler’s solution procedure is marching from the initial

time t0 to the final time tf = t0 + N�t with a constant time step �t. The following

equations are solved successively in the computational process:

x(t0 + �t) = x0 + f (x, t0)�t,

x(t0 + 2�t) = x(t0 + �t) + f [x, (t0 + �t)] �t
... (5.7)

x(t0 + N�t) = x [t0 + (N − 1)�t] + f [x, [t0 + (N − 1)�t]] �t .

In general, in the case of an nth-order system represented by a set of n state-variable

equations [Eqs. (3.6)], a corresponding set of difference equations, one for each

state variable, similar to approximation (5.6), has to be provided. The state-variable

equations can be rearranged into the form of Eq. (5.1), as follows:

dqi

dt
= fi (q, t), i = 1, 2, . . . , n, (5.8)

where the state vector q is a column vector containing q1, q2, . . . , qn and fi(q, t) includes

the inputs uj(t), (j = 1, 2, . . . , l), as well as the state and input matrix coefficients. At

5.2. Euler’s Method 123

each step of the numerical solution process, a set of equations of the following form

will be solved:

qi (t0 + �t) = qi (t0) + fi (q, t0)�t, i = 1, 2, . . . , n. (5.9)

Euler’s method is illustrated by Example 5.1.

EXAMPLE 5.1

Use Euler’s method to obtain a numerical solution of the differential equation

4
dx

dt
+ x = 4

over a period of time from 0 to 12 s. The initial condition is x(0) = 10, and the system

time constant is 4 s.

SOLUTION

First rewrite the differential equation in the same form as that of Eq. (5.1):

dx

dt
= −0.25x + 1.

By use of Euler’s formula (5.6), the successive values of x are calculated as follows:

x(1) = x(0) + [−0.25x(0) + 1] �t,

x(2) = x(1) + [−0.25x(1) + 1] �t
...

The first step in implementing the numerical solution is to choose a value of the integration

interval �t. Although rules of thumb and implications associated with this choice are

discussed in greater detail in Section 5.4, the reader can gain some appreciation for the

problem by referring to Fig. 5.1. The Euler method approximates the function as a series of

straight lines. Because it is well known that the solution to this equation is an exponential

function (see Section 4.3), it would seem reasonable to choose a time step that is somehow

related to the exponential time constant � . For this system, the time constant is 4 s, and

to illustrate this relationship, the Euler method is implemented for �t’s of 0.5, 1.0, 2.0,

and 4.0 s.

A simple script was written for MATLAB to solve this equation and is shown in

Table 5.1. Note that MATLAB script is fairly easy to understand and it would be rather

straightforward to go from this simple script to another programming environment such

as basic or c .

As already stated, this program was run for various values of integration time step

(dt in the script file) and the results were compared with the exact solution, which can

be found to be

x(t) = 6e−t/4 + 4.

Table 5.2 summarizes the results for various integration intervals.

Note that, in all cases, some error is apparent, even at the very first time step. The

program listed in Table 5.1 (and all scripts listed in this text) is available for downloading

at the authors’ web site (see preface for details). The script can easily be modified to solve

other first-order differential equations by modifying the line

k1 = −1/4 * x (i − 1) + 1;

124 Numerical Solutions of Ordinary Differential Equations

Table 5.1. MATLAB script for the solution of Example 5.1 use of the Euler method

of integration

% File EULMETH.M

%

% MATLAB script to integrate a first order

% ODE using the Euler method.

%

dt = 0.5; % time step

t(1) = 0.0; % initial time

tf = 12.0; % final time

%

x(1) = 10.0; % Set initial condition

%

for i = 2: tf/dt + 1

k1 = − 1/4*x(i − 1)+1;
x(i) = x(i − 1) + k1*dt;

t(i) = t(i − 1)+ dt; % increment time end

end

This line of the script computes the value of the derivative (k1 for this time step). For a

new differential equation (linear or nonlinear), one simply changes this line to compute

the appropriate value of the derivative for the value of x(i−1). This points to the real

power of numerical integration for engineering analysis. Once the integration routines are

written and debugged, new systems can be analyzed with a minimum of new programming.

5.3 MORE ACCURATE METHODS

The Euler method presented in the previous section is very simple and easy to use, but

it is seldom used in serious computation because of its poor accuracy, as illustrated in

Table 5.2. In general, the accuracy of a numerical integration method can be improved

in two ways: by use of a more sophisticated algorithm for numerical approximation

Table 5.2. Comparison of Euler method solution for various step sizes

Time (s) �t = 0.5 s �t = 1.0 s �t = 2.0 s �t = 4.0 s Exact

0.0 10.0000 10.0000 10.0000 10.0000 10.0000
1.0 8.5938 8.5000 8.6728
2.0 7.5171 7.3750 7.0000 7.6392
3.0 6.6928 6.5312 6.8342
4.0 6.0617 5.8984 5.5000 4.0000 6.2073
5.0 5.5785 5.4238 5.7190
6.0 5.2085 5.0679 4.7500 5.3388
7.0 4.9253 4.8009 5.0426
8.0 4.7084 4.6007 4.3750 4.0000 4.8120
9.0 4.5424 4.4505 4.6324

10.0 4.4153 4.3379 4.1875 4.4925
11.0 4.3179 4.2534 4.3836
12.0 4.2434 4.1901 4.0938 4.0000 4.2987

5.3. More Accurate Methods 125

of the derivatives and by reduction of the integration interval. More sophistication

usually implies the use of more terms of the Taylor series approximation of the

function; hence these are called “higher-order” methods. Reducing the integration

step size will, up to a limit, improve the estimation. However, as will be made clear in

this section, higher-order methods have a greater impact than simply decreasing the

step size. In this section, higher-order methods are introduced. Section 5.4 discusses

the issue of step size in more detail.

It might be worthwhile to point out the explicit constraints of numerical integra-

tion. The equations that are being solved (first-order differential equations) express

a functional relationship between the derivative of some unknown function and the

function itself. This implies that, if the value of the function is known at some instant

in time t0, the value of its derivative at that instant can be computed from the differ-

ential equation. That relationship is exploited by use of the Euler method illustrated

in the previous section. To improve accuracy and efficiency, higher-order methods

are used that require estimates of derivatives at time(s) greater than time t0. Unfor-

tunately, the function, and hence its derivative, is unknown for times greater than

t0 (this is the very problem being solved). It is this apparent piece of circular logic

that is the essence of the numerical integration problem: How does one estimate val-

ues of derivatives that are dependent on those very functional values that are being

computed?

5.3.1 Improved Euler Method

Different variations of this method can be found in the literature (sometimes called

the midpoint method, Heun’s method, or second-order Runge–Kutta), and they share

the common theme of using two evaluations of the derivative function to find a better

approximation of the average slope through the interval. This is achieved in two steps.

First, Euler’s method is used to approximate the integrand at the end of the time step:

x̂(t0 + �t) = x(t0) + k1�t, (5.10)

k1 = f (x0, t0). (5.11)

Then the value of x̂ is used to approximate the slope of the function at the end of the

interval:

k2 = f [x̂(t0 + �t), t0 + �t]. (5.12)

The approximation then uses the average of the two slopes to compute the integrand:

x(t0 + �t) ∼= x(t0) +
k1 + k2

2
�t. (5.13)

This method is only marginally more complicated than Euler’s method (requiring an

additional evaluation of the function for each step), but the improved accuracy more

than justifies this additional effort. The method is easily implemented in a MATLAB

script (left as an exercise for the student in Problem 5.3). Table 5.3 lists the numerical

126 Numerical Solutions of Ordinary Differential Equations

Table 5.3. Comparison of the improved Euler method for the solution of a first-order

differential equation by use of various time steps

Time (s) �t = 0.5 s �t = 1.0 s �t = 2.0 s �t = 4.0 s Exact

0 10.0000 10.0000 10.0000 10.0000 10.0000
1.0 8.6761 8.6875 8.6728
2.0 7.6444 7.6621 7.7500 7.6392
3.0 6.8403 6.8610 6.8342
4.0 6.2136 6.2352 6.3438 7.0000 6.2073
5.0 5.7252 5.7462 5.7190
6.0 5.3445 5.3642 5.4648 5.3388
7.0 5.0479 5.0658 5.0426
8.0 4.8167 4.8327 4.9155 5.5000 4.8120
9.0. 4.6365 4.6505 4.6324

10.0 4.4960 4.5082 4.5722 4.4925
11.0 4.3866 4.3970 4.3836
12.0 4.3013 4.3102 4.3576 4.7500 4.2987

solution of the differential equation from Example 5.1 in which the improved Euler

method is used for the same time steps for Table 5.2.1

Tables 5.2 and 5.3 invite comparison between the two methods. In particular, look

at the results for the time step of 2.0 s. After 12 s, Euler’s method has an accumulated

error of approximately 0.2049 when compared with the exact solution. The improved

Euler method has an error of 0.0589. Although the improved Euler method required

twice as many function evaluations, the error at t = 12 s was reduced by a factor of

3.5. One can make a similar comparison by noting that Euler’s method for a time step

of 1.0 s (which requires the same number of function evaluations as the improved

method for a time step of 2.0 s) leads to an error of 0.1086, which is still almost

two times greater than the error introduced by the improved Euler method for the

same number of function evaluations. This comparison leads to the conclusion that

the higher-order methods are more effective in increasing integration accuracy than

simply making the time step smaller. The next subsection introduces a method that

is widely considered to be the best trade-off between higher-order approximations

and ease of implementation.

5.3.2 Runge–Kutta Method

In the classical Euler method, a continuous derivative is approximated by use of the

first-order term from the Taylor series. The improved Euler method uses the first

and second terms from the Taylor series. The accuracy of the approximation of the

first derivative, and eventually of the estimate of x(t0 + �t), can be improved by the

inclusion of higher-order terms from the Taylor series, and this is essentially the idea

behind most of the modern numerical integration techniques. The trick in the Runge–

Kutta method is that the higher derivatives are approximated by finite-difference

expressions and thus do not have to be calculated from the original differential

1 W. S. Dorn and D. D. McCracken, Numerical Methods with FORTRAN IV Case Studies (Wiley, New

York, 1972), pp. 368–72.

5.3. More Accurate Methods 127

equation. The approximating expressions are calculated by use of data obtained

from tentative steps taken from t0 toward t0 + �t. The number of steps used to

estimate x(t0 + �t) determines the order of the Runge–Kutta method. In the most

common version of the method, four tentative steps are made within each time step,

and the successive value of the dependent variable is calculated as

x(t0 + �t) = x(t0) +
(

�t

6

)

(k1 + 2k2 + 2k3 + k4), (5.14)

where

k1 = f [x(t0), t0] , (5.15)

k2 = f

[(

x(t0) + �t
k1

2

)

,

(

t0 +
�t

2

)]

, (5.16)

k3 = f

[(

x(t0) + �t
k2

2

)

,

(

t0 +
�t

2

)]

, (5.17)

k4 = f [(x(t0) + �t k3) , (t0 + �t)] . (5.18)

For higher-order systems, a set of n equations, one for each state variable, of the form

of Eq. (5.14) is solved at every time step of the numerical solution.

Table 5.4 presents a MATLAB script that implements the fourth-order Runge–

Kutta method for the solution of the differential equation of Example 5.1. Note that

this script is substantially the same as the one shown in Table 5.1, with additional

Table 5.4. MATLAB script for implementation of the fourth-order Runge–Kutta

numerical integration scheme

%

% File RKMETH.M

%

% MATLAB script to integrate a first order

% ODE using the Runge—Kutta method.

%

dt = 1.0; % time step

t(1) = 0.0; % initial time

tf = 12.0; % final time

%

x(1) = 10.0; % Set initial condition

%

for i = 2:tf/dt + 1

k1 = −1/4 * x(i − 1) + 1;

xhat1 = x(i − 1) + k1*dt/2;

k2 = −1/4 * xhat1 + 1;

xhat2 = x(i−1) + k2*dt/2;

k3 = −1/4 * xhat2 + 1;

xhat3 = x(i−1) + k3*dt;

k4 = −1/4 * xhat3 + 1;

x(i) = x(i−1) + dt/6* (k1+2*k2+2*k3+k4);
t(i) = t(i−1) + dt; % increment time

end

plot(t,x) % plot response

128 Numerical Solutions of Ordinary Differential Equations

Table 5.5. Comparison of the fourth-order Runge–Kutta method for the solution of a

first-order differential equation by use of various time steps

Time (s) �t = 0.5 s �t = 1.0 s �t = 2.0 s �t = 4.0 s Exact

0 10.0000 10.0000 10.0000 10.0000 10.0000
1.0000 8.6728 8.6729 8.6728
2.0000 7.6392 7.6393 7.6406 7.6392
3.0000 6.8342 6.8343 6.8342
4.0000 6.2073 6.2074 6.2090 6.2500 6.2073
5.0000 5.7190 5.7191 5.7190
6.0000 5.3388 5.3389 5.3404 5.3388
7.0000 5.0426 5.0427 5.0426
8.0000 4.8120 4.8121 4.8133 4.8438 4.8120
9.0000 4.6324 4.6325 4.6324

10.0000 4.4925 4.4926 4.4935 4.4925
11.0000 4.3836 4.3836 4.3836
12.0000 4.2987 4.2988 4.2994 4.3164 4.2987

lines added to compute the new terms. Table 5.5 shows the results of the computation

for the same set of time steps used in the previous tables.

The results obtained with the Runge–Kutta method show a very dramatic

increase in accuracy for the number of additional function evaluations. The func-

tions that describe the system derivatives must be evaluated four times for each time

step. Yet the accuracy achieved for a time step of 2.0 s is almost 140 times better than

the improved Euler method after 12 s and about 300 times better when compared

with Euler’s method. Clearly, the effort invested in deriving and implementing a

more sophisticated integration scheme pays off impressively.

These concepts are also illustrated in Fig. 5.2, in which the root-mean-square

(rms) errors between the analytical and numerical solutions are plotted for the three

Figure 5.2. Plot of rms error vs. integration interval for Euler, improved Euler, and Runge–Kutta
integration methods, using the problem stated in Example 5.1.

5.4. Integration Step Size 129

methods as a function of integration interval. (The rms error is the square root of

the average of the error squared for each step in the integration.) Note that the

error is plotted on a logarithmic scale so that the relative sizes of the errors are more

clearly seen.

These comparisons are by no means conclusive, but they are indicative of the

relative merits of the various methods. It is important to note that the example used

in this case is a linear first-order system. The true strength of numerical integration

lies in its ability to solve highly complex and nonlinear differential equations. The

next section deals with issues of integration step size, particularly in regard to more

complicated equations.

5.4 INTEGRATION STEP SIZE

Comparison of the various integration methods discussed in the previous sections

shows a steady improvement in the accuracy of the numerical estimate as smaller

and smaller step sizes are used. The essential question of just which step size to use is

still open, however. Although many approaches to this problem exist, a reasonable

approach is the following two-step process.

First, estimate an appropriate step size based on available knowledge of the

system dynamics. In nearly all cases, the engineer has some a priori information

regarding the system. Either a linearized model has already been used, or some

actual experimental work on the physical system has been carried out. In either case,

some knowledge about the time constants is available. The basic rule of thumb is

to choose an integration step size that is one-fourth to one-eighth of the smallest

time constant in the system. In Example 5.1, the time constant was 4 s. Note that

integration step sizes of 1 and 0.5 s yielded quite good results, especially when the

Runge–Kutta method was used.

Second, test the candidate time step by trying a smaller one. Once an approximate

step size is chosen, carry out the integration for a representative period of time and

typical input. Then cut the integration time in half and carry out the integration again.

If the solution is not significantly improved, the original step size is appropriate.

On the other hand, if the solution is vastly different, the smaller step size must be

considered as the candidate step size and this step must be repeated.

Although this is a time-proven approach to computer simulation, it has certain

drawbacks. First, it requires at least two “dry runs” of the simulation. For large-

scale models that may be run on supercomputers, this can be very expensive. Most

applications, however, are more modest in size and can be quickly and cheaply run

on desktop workstations. Second, this approach is satisfactory only in assessing the

appropriate time step for the conditions under which it has been tested. In other

words, if the input is changed or the system is run through different operating con-

ditions, the time step may be inappropriate. Even for linear systems, if the input

function changes in a stepwise fashion, the time step must be very small to accurately

predict the behavior of the system in that region in time. Similarly, for nonlinear

systems, the response may be very different for different regions of the operating

space.

130 Numerical Solutions of Ordinary Differential Equations

Figure 5.3. Illustration of the procedure
used in adaptive-step-size integration algo-
rithms.

There is a more sophisticated approach to numerical integration that addresses

these concerns. The integration interval can be adjusted within the algorithm, with an

estimate of the integration error used to guide the interval selection. The adaptive-

step-size algorithms are very efficient and have become the standard in numerical

integration of ODEs.

There are many variations on the theme of adaptive-step-size algorithms, and

the interested reader and programmer is encouraged to read further in this area.2

Although a detailed treatment of the algorithms is beyond the scope of this text, the

concepts are rather straightforward and usually involve the following steps:

Step 1. Starting at some time t0, integrate to t0 + �t, using a default time step,

�t (see Fig. 5.3).

Step 2. Return to the original time, and integrate to t0 + �t by using two time

steps of �t/2.

Step 3. Compare the difference between the results of Steps 1 and 2 to a user-

defined tolerance.

Step 3. If the tolerance is exceeded, decrease the step size and return to Step 1;

if not, nominally increase the step size and move to the next time step.

Although the interval can theoretically become arbitrarily large or small, realistic

implementations of the algorithm require that the user specify limits for the largest

and smallest time steps, as well as the relative tolerance for the adaptation. Typically,

the tolerance is specified as a relative number, to be computed relative to the values of

the variables themselves. Therefore, if a tolerance of 0.001 is specified, the adaptation

algorithm will switch to a smaller step size if the difference between the two values

is greater than one part in one thousand.

The incremental amounts of increase and decrease of the time step are sug-

gested by a theoretical treatment of the integration errors and are described in detail

elsewhere.3

The following example illustrates the utility of variable integration-step-size

approaches.

2 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge

University Press, New York, 1988), Chap. 15.
3 Ibid.

5.4. Integration Step Size 131

EXAMPLE 5.2

Consider the following nonlinear differential equation:

4
dx

dt
+ x + fNL(x) = u(t),

where

fNL(x) =
{

0.4 for x > 0

−0.4 for x ≤ 0
,

and u(t) is a time-varying function with the following characteristics:

u(t) =

⎧

⎨

⎩

−1 for 0 ≤ t < 15

+1 for 15 ≤ t < 30.

−2 for 30 ≤ t < 50

Note that the particular nonlinearity exhibited by fNL can be used to represent the phe-

nomenon known as Coulomb (dry) friction, which is very common in mechanical systems.

Both the nonlinear friction load and the input function exhibit discontinuities. The input

u is discontinuous at t = 15 and t = 30 s. The friction load, fNL, is discontinuous when the

variable x changes sign.

Figure 5.4 shows the solution of this differential equation when the fourth-order

Runge-Kutta method and a constant integration interval of 2.0 s are used. In this plot,

the result of each time step is shown as an individual point.

Note in particular the apparent erratic behavior of the response in the few steps

following t = 10 s and at t = 30 s. Although it is difficult to predict the behavior of a

nonlinear system, this type of output should be considered suspicious, and an experienced

engineer will consider attempting a smaller step size when evaluating the solution.

Figure 5.5 shows the response of the system when a fourth-order Runge–Kutta

method with an adaptive-step-size algorithm is used. In this case, the tolerance was set

to 10−4.

Note that the response is much smoother, indicating that the overshoot at 30 s pre-

dicted in Fig. 5.4 was erroneous. Note also that the adaptive-step-size algorithm used

Figure 5.4. Solution of differential equation with varying inputs by use of constant-step-size Runge–
Kutta algorithms with a time step of 2.0 s.

132 Numerical Solutions of Ordinary Differential Equations

Figure 5.5. Solution of the differential equation considered in Example 5.2, by use of a variable-
time-step approach; Runge–Kutta with �tmax = 5 s, �tmin = 10−5 s, and tolerance = 10−4.

much smaller steps as the solution approached the discontinuities in the input (15 and

30 s) and also as the variable x changed sign (at approximately 16 and 31 s). Figure 5.6

shows a plot of the actual step size used versus time for the solution. Note that the step

size is plotted on a logarithmic scale so that the total spread of the step sizes can be

appreciated.

Approximately 72 steps were taken with the variable-step-size algorithm, ranging

from 0.007 to 2.0 s. Roughly half of the time steps were taken at steps greater than or

equal to 1.0 s. Note that, to achieve the same relative accuracy using a fixed-time-step

algorithm, the entire problem would have to be integrated with the smallest time step

of 0.007 s, which corresponds to almost 7200 integration steps. Therefore the solution

would have taken 100 times longer to compute in that manner. Clearly, the adaptive-

step-size algorithm is an important modification to numerical solutions of problems of this

class.

Figure 5.6. Plot of time step vs. time for solution by use of variable-step-size Runge–Kutta algorithm.

5.6. Stiff Systems of Differential Equations 133

5.5 SYSTEMS OF DIFFERENTIAL EQUATIONS

The previous sections presented numerical methods for the solution of ODEs. Exam-

ples 5.1 and 5.2 showed the methods for single differential equations, that is, first-

order systems. The methods described are easily expanded to a system of differential

equations. This section looks at the implementation of numerical solutions for multi-

ple differential equations and some of the problems that may arise for such systems.

First, consider some of the important implications of state-space theory outlined

in Chap. 3. The essence of state-space theory is that any lumped-parameter system

(variables are not dependent on spatial coordinates, only time) can be represented

by a set of first-order differential equations:

q̇i = fi (q, u, t) i = 1, 2, . . . , n. (5.19)

Although previous discussions of these equations focused on the various forms they

take, the implications of these equations for computer solution are now considered.

The equations previously shown, together with the theory of state space, imply that if

the values of the state variables are known at any given instant in time, the derivatives

of the states can be computed, assuming that the functional relationships are known.

In the field of computer programming, this means that one can write a subroutine

or function that takes as an argument the values of the state variables at some time

t0, and the value of t0 itself. It would return the values of all the state derivatives at

that instant. Note that all of the techniques described in this chapter are structured

in this manner. It should be clear therefore that the process of computer simulation

reduces to writing the proper computer subroutine to compute the state derivatives

given values of the state variables and the independent variable, time.

EXAMPLE 5.3

Recall the spring–mass–damper system of Example 4.2. Application of Newton’s sec-

ond law gave rise to a second-order differential equation relating applied force to mass

displacement:

mẍ + bẋ + kx = F(t).

This differential equation can be expressed as two first-order differential equations, taking

velocity and displacement as the states q1 and q2, respectively:

q̇1 =
1

m
[F(t) − bq1 − kq2] ,

q̇2 = q2.

The MATLAB script for implementing Euler’s method in Table 5.1 can be easily modified

to solve these equations. The resultant program is shown in Table 5.6. Verification of this

program is left as an exercise.

5.6 STIFF SYSTEMS OF DIFFERENTIAL EQUATIONS

A sizable majority of simulations that are encountered by engineers are adequately

solved by the well-tested variable-step-size algorithms that are currently available in

134 Numerical Solutions of Ordinary Differential Equations

Table 5.6. MATLAB script file MEULER.M for implementation of the Euler method for

the integration of sets of differential equations

%

% File: MEuler.m

%

% MATLAB script to numerically integrate

% multiple ODE’s for a specified time step

% for model in Example 4.2

%

m = 9.0;

b = 4.0; % define model parameters

k = 4.0;

%

f = 1.0; % unit step input

%

dt = 0.2; % Time step

t(1) = 0.0; % Initial time

tf = 12.0; % Final time

%

x1(1) = 0.0;

x2(1) = 0.0; % set initial conditions

%

for i = 2: tf/dt +1
% Compute the derivatives

xd1 = 1/m* (f − b*x1(i−1) − k*x2(i−1));
xd2 = x1(i−1);
% compute the states

x1(i) = x1(i−1) + xd1*dt;

x2(i) = x2(i−1) + xd2*dt;

% increment time

t(i) = t(i−1) + dt;

end;

plot (t, x2)

commercial packages. Some systems, however, exhibit behaviors that defy quick and

accurate solution by these means, and specialized algorithms are required.

So-called “stiff systems” arise in many engineering applications. Stiff systems

are characterized by two or more components whose typical time responses vary

by several orders of magnitude. For example, if a system has a fast-acting actuator

(first-order time constant of 0.2 ms) acting on a large mass that is constrained by a

soft spring (natural frequency of 0.2 rad/s), such a system would be characterized as

a stiff system. One method of characterizing stiff systems is by examination of the

ratio of the slowest to the fastest system pole magnitude. In this case, that ratio would

be 5/0.0002 = 25,000. In general, ratios of 1000 or greater lead to systems that are

considered stiff.

Even adaptive-step-size algorithms will be constantly adjusting the time step to

accommodate the very fast-acting portion of the system, even though the slower por-

tions could be solved with much larger time steps. The problem is more complicated

5.6. Stiff Systems of Differential Equations 135

than simply requiring more computer time than might be practical. The methods

described in the previous sections sometimes fail altogether for stiff systems. Other

approaches are called for.

A detailed presentation of these other approaches is outside the scope of this

text, but a brief overview is in order. Approaches to solving stiff systems generally

rely on a somewhat indirect technique to solve for the values of the state variables at

any given time step. To see why this is an efficient approach, consider the following

example.

A linear first-order system with no input (unforced) can be represented by the

differential equation

q̇ = −
1

�
q. (5.20)

Numerical solutions of this equation will estimate values of q(t) at specific, discrete

instants of time, q(k�t), where k is an integer and �t is the integration interval. For

the sake of clarity, the argument of q is given as q(k), with the �t implied. The Euler

method computes the value of q at the k + 1 interval as a function of the value at the

k interval:

q(k + 1) = q(k) + �t q̇(k). (5.21)

Substituting Eq. (5.20), for t = k�t, into Eq. (5.21) and rearranging yields

q(k + 1) =
(

1 −
�t

�

)

q(k). (5.22)

Equation (5.22) is an important result. Equations of this form are common in math-

ematics and engineering, and general statements about their behavior are possible

based on simple observations. In particular, it can be shown that the sequence of

numbers q(k) given by Eq. (5.22) will converge (be stable) as long as the coefficient

(1 – �t/�) has an absolute value of less than 1. From this, it can be concluded that the

Euler method will not converge and thus will give erroneous results if the time step

�t becomes greater than 2� . Note that this result applies only to the stability of the

method, which assesses whether or not the solution grows without bound. Accuracy

demands that �t be much smaller, of the order of � /4 to � /8.

Consider now a different approach to applying Euler’s method to this simple

problem. Equation (5.23) shows an expression that results if the integration is per-

formed with a value of the derivative evaluated at the end of the integration interval,

the k + 1 time step:

q(k + 1) = q(k) + �t [q̇(k + 1)] . (5.23)

Substituting Eq. (5.20), for t = (k + 1) �t, into Eq. (5.23) yields the difference

equation

q(k + 1) =
1

1 + �t/�
q(k). (5.24)

This equation is of the same form as that of Eq. (5.15), but, because of the different

arrangement of the terms, the coefficient is always less than 1, regardless of the

136 Numerical Solutions of Ordinary Differential Equations

choice of �t . This method is then inherently stable and will always yield a convergent

sequence of numbers. When Eq. (5.20) is substituted into Eq. (5.24), the result is an

implicit equation for q(k +1). Hence methods that take advantage of this property

are termed “implicit integration methods,” and it can be seen that implicit methods

are much more robust to numerical stability issues than are explicit methods such as

Euler and Runge–Kutta.

A large number of these implicit methods are available and are especially well

suited for stiff systems of differential equations. In general, these techniques require

more computation time or more information about the system, or both. However, for

systems that fit into this category, they are the only choice for numerical solutions.

Of these methods, some of the better known are Gear, Adams, and Rosenbrock

methods, named after the originators of the techniques.4

A brief discussion about the philosophy of modeling is perhaps in order at this

point. The astute student may recognize the fact that the contribution of the very fast

system components to the overall response of the system will be negligible, because a

fast actuator will appear to be instantaneous relative to the motion of a large mass. An

appropriate approach would be to ignore the dynamics of the actuator and model it as

an algebraic equation. This approach is appropriate only for linear models. Systems

with significant nonlinearities will require that we consider all dynamics.

Typical applications that give rise to stiff systems are kinetics encountered in the

chemical processing field and in detailed dynamics of rotating equipment in which the

engineer is interested in the dynamics of a high-speed shaft throughout its rotation.

Solving the differential equations that describe stiff systems by use of the

methods discussed in this chapter will require far smaller steps, more computer

time, and ultimately lead to less accurate results than are possible with algorithms

specifically designed for stiff systems. The details of these algorithms, first proposed

by Gear5 and later refined by many others, are outside the scope of this text.

MATLAB and Simulink provide a group of algorithms specifically designed for stiff

systems and, in the following example, the advantage of these algorithms is illustrated.

EXAMPLE 5.4

The subsequent equations describe a second-order nonlinear system that can be charac-

terized as stiff:

q̇1 = u(t) − q1, (5.25)

q̇2 = 104
[

(q1 + 1)3 − q2

]

. (5.26)

The application requires that the solution be found for 1.5 s, zero initial conditions, and

an input function u(t) that is a square wave with a unit amplitude at 1 Hz.

Table 5.7 summarizes the nature of the solution computed by two different algorithms

available in MATLAB: RK45, a variable-step-size Runge–Kutta approach, and ODE15S,

4 Ibid.
5 C. W. Gear, “The automatic integration of ordinary differential equations,” Commun. ACM 14, 176–9

(1971).

5.6. Stiff Systems of Differential Equations 137

Table 5.7. Details of the numerical solution

Algorithm Number of steps Maximum step size Minimum step size

RK45 4523 0.001 0.00001
ODE15S 155 0.08 0.000001

a low-order algorithm specifically designed for stiff systems, which also uses variable step

sizes.

When the RK45 routine is used, the solution requires 4523 time steps, ranging in size

from 10−3 to 10−5 s. By comparison, ODE15S solves the same problem in only 155 time

steps, using steps ranging from 0.08 to 10−6 s. Because the majority of the computational

load of solving differential equations is the evaluation of the system equations, a rough

comparison of the computational load (and computer execution time) between the two

methods can be made by examination of the ratio of numbers of time steps taken. By that

comparison, the stiff-system method is approximately 30 times faster than the traditional

variable-step-size approach.

The execution time, however, does not tell the complete story. Figure 5.7 shows a

comparison of q2 computed by the two solutions over a brief period of the response.

Note that the two responses are not the same. The traditional approach (RK45) exhibits

high-frequency small-amplitude oscillations throughout the response whereas the algo-

rithm for stiff systems does not exhibit these oscillations. Further investigation into this

discrepancy would show that the oscillations are artifacts of numerical instabilities in the

nonstiff algorithms and that the approach for stiff systems is not only more efficient, but

more accurate as well.

Figure 5.7. Portion of the response for Example 5.4 computed with RK45 (oscillating response)
and ODE15S (smooth response).

138 Numerical Solutions of Ordinary Differential Equations

Figure 5.8. Portion of the computed response in Example 5.4 showing the individual time steps for
RK45 (points) and ODE15S (circles).

Finally, Fig. 5.8 shows the same response, but in a manner that indicates the individual

integration time steps. Note that the adaptive-step-size feature of RK45 appears to be

ineffective because the steps are uniformly small. On the other hand, the stiff-system

solver is using very large steps when the solution is changing slowly, smaller steps when

it is changing rapidly, as one would expect.

5.7 SYNOPSIS

In this chapter, the core technology of computer simulations – numerical

integration – was discussed. The fact that any lumped-parameter system can be rep-

resented by a set of first-order differential equations (Chap. 3) allows for the con-

struction of truly general numerical algorithms for the solution of these equations.

The principles of numerical integration were illustrated with the Euler method. One

interpretation of the Euler method is that it approximates the derivative of the func-

tion through a fixed integration interval by means of the first term of a Taylor series

expansion of the derivative. The Euler method is therefore a first-order approxi-

mation method. Higher-order methods were introduced, including a modified Euler

(second-order) method and the well-known fourth-order Runge–Kutta method. The

examples in this chapter showed how higher-order approximations can dramatically

improve the accuracy and efficiency of a computation.

Once the numerical method is chosen, the size of the integration step must also

be chosen. Rules of thumb that relate the integration step size to known system

parameters such as time constants were discussed. The concept of a variable- or

adaptive-step-size algorithm was introduced, and its utility was demonstrated with a

simple example.

Problems 5.1–5.9 139

Most engineering systems encountered in practice are described by more than

one differential equation and therefore require the solution of sets of differen-

tial equations. The extension of these methods to multiple differential equations

is straightforward, but the possibility exists that the system might be numerically ill-

conditioned. Systems with a large dynamic range of time constants (i.e., the ratio of

the largest to the smallest time constant is 1000 or greater) are known as stiff systems

and require the use of implicit integration methods for efficient solution.

Although information provided in this chapter could be used to write new com-

puter subroutines to carry out these numerical methods, there are many commercially

available software packages that implement these methods in a highly efficient and

error-free manner. In the next chapter, the subject of computer simulations will be

discussed, and one such package, MATLAB Simulink, is used as an example.

PROBLEMS

5.1 Starting with the MATLAB script listed in Table 5.1, obtain the numerical solution

of Problem 4.1(a). Use the integration time steps �t = 0.1 and 0.02 s.

5.2 Starting with the MATLAB script listed in Table 5.1, obtain the numerical solution

of Problem 4.1(a) for each of the following values of integration time step: � /10, � /5, � /2,

� , 2� , and 5� , where � is the time constant of the dynamic system considered in Problem

4.1. Compare the numerical solutions obtained for different sizes of integration time step

with the exact analytical solution.

5.3 Starting with the MATLAB script listed in Table 5.1, modify the program to imple-

ment the improved Euler method and obtain a numerical solution to Problem 4.1(a).

5.4 Use the MATLAB script lisited in Table 5.4 to obtain the numerical solution of

Problem 4.1(a).

5.5 Use the Runge–Kutta method to verify the analytical solution of Problem 4.3.

5.6 Compare simulations by using the improved Euler method and the Runge–Kutta

method to obtain the numerical solution to Problem 4.5.

5.7 Starting with either the Euler method from Table 5.1 or the improved Euler method

(solved in Problem 5.3), modify your program to solve a system of two differential equa-

tions. Test the program by computing the step response of the original system considered

in Example 4.2. Compare performance specifications (percentage of overshoot tp, DR)

obtained in the analytical and numerical solutions.

5.8 Modify the computer program (or MATLAB script) from Problem 5.7 to solve a

system of three equations and obtain a numerical solution of Problem 4.12.

5.9 A mechanical system has been modeled by the following nonlinear state-variable

equations:

ẋ = v,

v̇ = −
k

m
x −

1

m
FNLD +

1

m
Fa(t).

The nonlinear friction force FNLD is approximated by the expression

FNLD = fNL(v) = v2 + v + 1.

140 Numerical Solutions of Ordinary Differential Equations

The input force Fa(t) has a constant component Fa = 15 N, which has been acting on the

system for a very long time, and an incremental component F̂a(t) equal to �FaUs(t). The

values of the system parameters are m = 10 kg and k = 5 N/m.

(a) Determine the normal operating-point values for the state variables x and v corre-

sponding to Fa .

(b) Linearize the system model in the vicinity of the normal operating point. Find natural

frequency �n, damping ratio � , and period of damped oscillations Td for the linearized

model.

(c) Use the fourth-order Runge–Kutta method shown in Table 5.4 to compute the non-

linear system response to Fa(t) for the step change �Fa(t) = 1.5 N. A suggested

integration time step for the computer program is �t ≤ 0.05 Td. Compare the spec-

ifications of the computer-generated step response with those obtained analytically

for the linearized model in part (b).

(d) Repeat part (c) for a magnitude of the input step change of �Fa(t) = 15 N.

(e) Repeat part (c) for the linearized model.

(f) Repeat part (d) for the linearized model.

(g) Compare the agreement between the results obtained for nonlinear and linearized

models for small- and large-magnitude inputs.

5.10 (a) Use the fourth-order Runge–Kutta method shown in Table 5.4 to simulate the

response of the system having the following input–output equation to a unit step

change in u(t) at t = 0:

0.025
d3x

dt3
+ 0.25

d2x

dt2
+ 0.1

dx

dt
+ 1 = 0.5u(t).

Assume that all initial conditions at t = 0− are zero.

(b) Modify the subroutine for using the improved Euler method and run the modified

subroutine for comparison with part (a) by using the same time step as in part (a).

(c) Compare both simulations with the exact solution obtained by the classical method

described in Chap. 4.

5.11 The following differential equations are known as the Lorenz equations, after Ed

Lorenz, an atmospheric scientist who was the first person to recognize chaos in nonlinear

systems:

ẋ1 = 10(x2 − x1),

ẋ2 = 28x1 − x2 − x1x3,

ẋ3 = x1x2 − 2.67x3.

Write a program to integrate these equations by using the Runge–Kutta method for an

arbitrary set of initial conditions for 100 s. Use the plot3 command in MATLAB to

examine the state trajectory of this system for various initial conditions.

5.12 Another well-known nonlinear equation is the Van der Poll equation, a second-

order nonlinear equation that results in an oscillatory response for some values of the

parameters:

d2 y

dt2
− �(1 − y2)

dy

dt
+ x = 0.

Write a script to solve this equation by using the Runge–Kutta method. Use � = 3 and

experiment with a wide variety of initial conditions for both y and dy/dt.

6

Simulation of Dynamic Systems

LEARNING OBJECTIVES FOR THIS CHAPTER

6–1 To know the common elements of computer simulations.

6–2 To be able to build block diagrams of systems based on the model equations.

6–3 To become familiar with the basic block set of Simulink.

6–4 To understand different approaches to simulation utilizing different features of

Simulink.

6–5 To be able to simulate both linear and nonlinear systems.

6–6 To be able to simulate configuration-dependent systems.

6–7 To be able to conduct parametric studies of systems through scripting multiple

runs of the simulations.

6.1 INTRODUCTION

System simulation is one of the most widely used tools in modern society. From

weather forecasting to economic analysis, from robotics to computer animation, sim-

ulation is becoming a commonplace tool for analysts and designers of all types, not

just engineers. Yet, as widespread as these applications are, the fundamental basis of

system simulations is common. A computer simulation is a numerical solution of a

set of differential equations that are intended to model the way in which a particular

system evolves in time.

In Chap. 4, techniques for the analytical solution of differential equations were

presented. These methods represent a powerful set of tools for the study of lin-

ear dynamic systems. It was shown that by simply inspecting the coefficients of a

first- or second-order characteristic equation, the entire characteristic of the step

response could be predicted. At this point, it would be fair to ask the question: Why

are computer-based methods for finding the responses of dynamic systems needed?

There are several important answers to this question; three of the more compelling

arguments are summarized below.

1. Nonlinear models: In the discussion of analytical solutions, only equations that

were linear in their variables were solved. However, few real-world systems

exhibit consistently linear behavior. In fact, portions of Chap. 2 are devoted to the

techniques needed to linearize nonlinear differential equations. In reality, all real-

world systems are nonlinear. Although linear analytical methods are powerful

141

142 Simulation of Dynamic Systems

and allow the engineer to approximate system response of many systems, details

of system behavior must be revealed through study of the nonlinear model.

Analytical solutions exist for a small number of special nonlinear differential

equations, but most must be solved numerically through computer simulation.

2. High-order linear models: The methods for solution of system responses of lin-

ear systems that were described in Chap. 4 apply to linear models of arbitrary

order. However, it is very difficult to manipulate such solutions for models of

order greater than 3. In such cases, it is often more expedient to use computer

simulation to solve for the response of a system.

3. Arbitrary forcing functions: Although analytical methods are shown to be very

powerful for characterizing the response to initial conditions (homogeneous

response) or the response to simple inputs (e.g., the unit step), response to arbi-

trary inputs is more problematic. The convolution integral provides the necessary

capability to solve analytically for the response of a system to arbitrary inputs,

but its use still requires that the input be analytically defined, which is not always

possible.1

Although computer simulations can be used to model a large variety of systems, it

can be seen that all computer simulations must embody the following components:

1. The structure of the mathematical model: This is the complete set of differential

equations that describe the system behavior and reflect the fundamental physical

laws governing the behavior of the system.

2. Model parameter values: Model parameters refer to numerical constants that

usually do not change over the course of the simulation. Typical parameters

for mechanical systems are mass, damping coefficient, and spring stiffness. Note

that these values may sometimes change over time, but they usually change at

a much slower rate than the dynamic variables that are being computed by the

simulation.

3. Initial conditions: In previous chapters, the importance of initial conditions for

the solution of differential equations was discussed. This topic is of equal impor-

tance for simulations.

4. Inputs: Typically, a system responds to one or more inputs. The simulation must

embody the inputs as well.

5. Outputs: Although a simulation does not require that the user explicitly define

outputs, it is assumed that the goal of a computer simulation of a dynamic system

is the time history of specific physical variables in the system under study. The

time history of output variables can be stored to the computer hard drive for

later analysis or displayed as a graph on the screen.

6. Simulation solution control parameters: Simulation solution control parameters

define the values and choices made by the engineer that dictate how the numeri-

cal methods behind the simulation operate. These include values that determine

the step size, output interval, error tolerance, and choice of integration algorithm.

1 D. Inman, Mechanical Vibrations, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 2001).

6.2. Simulation Block Diagrams 143

At the root of computer simulation is the process of integration. Chapter 3

described the theory of state space for dynamic systems. The most important impli-

cation of that theory is that any lumped-parameter system can be described as a set

of first-order differential equations of this form:

q̇i = fi (q, u, t) i = 1, 2, . . . , n. (6.1)

An important implication of this form is that values of qi(t) can be found by

integration of the function fi(t) over time. This is complicated by the fact that each

function fi is a function of the values of the state variables at the time for which

the derivatives are being computed. Chapter 5 discusses integration algorithms that

untangle this loop, allowing for numerical solutions of the state equations. The tech-

niques outlined in Chap. 5, and more sophisticated methods based on those tech-

niques, underlie all computer simulation packages.

6.2 SIMULATION BLOCK DIAGRAMS

Although the dynamic interactions between system elements are properly described

by mathematical equations of the type developed previously (Newton’s second law,

state-variable, or input–output differential equations), the use of functional block

diagrams is often very helpful in visualizing how these interactions occur. Each block

of such a diagram represents a single mathematical operation used in the describ-

ing equations. These block diagrams were first used when analog computers were

developed to simulate the performance of dynamic systems. Later they became very

helpful in both visualizing and making a preliminary analyses of a system without

using a computer. As computer-based tools were developed to analyze and simulate

dynamic systems, many people used the block diagram as the basis for represent-

ing systems and based their model representation on block diagrams. Currently, all

popular computer packages designed for system simulation use some form of block

diagrams as the primary means of user input of system structure. Appendix 4 is a

brief tutorial of MATLAB’s version of this approach, Simulink. The simulation case

study in Section 6.5 utilizes Simulink in carrying out the study.

In this section, each of the functional blocks is shown and defined for its corre-

sponding mathematical function; then simple connections or combinations are used

to represent typical describing equations. Finally, examples have been chosen to

illustrate how these diagrams are used to represent complete mechanical systems,

showing all the significant interactions involved in the response of the system model to

input disturbances. Thus, in addition to specific output variables, all the other system

variables are shown as well. Applications to other systems, such as electrical, ther-

mal, fluid, and mixed systems, are left to illustrations, examples, and end-of-chapter

problems in later chapters.

6.2.1 Coefficient Blocks

When a system variable is multiplied by a coefficient, this function is represented

by a coefficient block, as shown in Fig. 6.1. This figure includes the mathematical

144 Simulation of Dynamic Systems

x C y x X

C(t)

y

(a) x C = y (b) x C(t) = y

Figure 6.1. Coefficient block: (a) Constant
coefficient and (b) time-varying coefficient,
i.e., a multiplier.

operation represented by the block and its input and output variables depicted as

signals.

The arrow-directed input and output signal lines are intended to represent only

signal flow; they are not necessarily intended to represent only physical connections

(although they sometimes do so). Note that the multiplier function (×) is needed

when the coefficient C is time varying, either as a known or as an unknown function

of time. Similarly, a divider function (÷) is occasionally needed when x is to be divided

by a time-varying coefficient C.

6.2.2 Summation Blocks

When a system variable is equal to the sum of two or more other system variables,

the relationship is depicted by means of a small circle with the inputs and outputs

arranged as shown in Fig. 6.2. This figure illustrates the three most commonly encoun-

tered forms of this block diagram.

6.2.3 Integration and Differentiation Blocks

When a system variable is the time integral of another system variable, the integration

block is used to describe this functional relationship, as shown in Fig. 6.3(a). This

figure also shows the initial value of the output at time t = 0 being summed with the

integrator output, along with the corresponding mathematical equation. In reality,

the initial conditions are not explicitly included in the block diagram but are implicit

with the integrator block. The inverse operation, the function of differentiation, is

represented by means of a differentiator block, as shown in Fig. 6.3(b). Because true

differentiation is not physically achievable for stepwise changes, simulation diagrams

usually do not use differentiator blocks. It seems ironic that derivatives with respect

to time are commonly used in differential equations to describe dynamic systems,

x ∑ y x

x − y = z

z

y

+
−

−y

−

x z

y

+

Figure 6.2. Three commonly used versions of the summation block diagram.

Example 145

x(t) y(t)

y(0)

∫dt
∫
0
x(t)dt

∑

(b) y = Dx = dx/dt(a) y(t) = y(0) + ∫
0

x(t)dt

x yD

D = d/dt

t

t

Figure 6.3. Block diagram symbols for integration and differentiation with respect to time.

Fi
m

k

b

x1
v1

(r1)

(Input)

Figure 6.4. Simple mass–spring–damper sys-
tem.

whereas in point of fact the dynamic behavior is more truly described physically in

terms of time integrations.2

6.2.4 Drawing Complete Diagrams from Describing Equations

Usually one develops a typical simulation block diagram by starting with the input

signal and using successive integrators combined with other functional blocks to

arrive at the output. This approach will always work for describing physically realiz-

able models of dynamic systems. If it is impossible to model a set of system equations

without resorting to the use of one or more differentiators, it can be assumed that

these equations represent a physically unrealizable system; moreover, the system

input–output equation will have one or more right-hand-side (input) terms involv-

ing derivatives that are of higher order than the highest derivative term of the left-

hand (output) side. The following example is used to illustrate the development of

simulation block diagrams for physically realizable system models.

EXAMPLE 6.1

Develop the simulation block diagram for the mass–spring–damper system shown

schematically in Fig. 6.4.

2 It may be noted that achieving true time differentiation by physical means would be equivalent to

predicting the future; this is implicitly involved in a system input–output differential equation in which

the highest derivative of the input variable is larger than that of the output variable. Such an equation

also represents a situation that is impossible to achieve physically when step changes occur to the input

variable.

146 Simulation of Dynamic Systems

Fi

kx1

bv1

Fm bv1

dt

1
m

−

−
+

Figure 6.5. Arrangement of functional blocks
to simulate the terms of Eq. (6.3).

SOLUTION

Applying Newton’s second law to mass m yields

Fi − Fk − Fb = m
dv1

dt
. (6.2)

Equation (6.2) may be combined with the elemental equations for the spring and damper

forces and rearranged to provide the expression for the derivative of the velocity with

respect to time:

dv1

dt
=

1

m
(Fi − kx1 − bv1). (6.3)

In a sense, the block diagram to model this equation is built from “the inside out.” The

terms in the parentheses represent a summation of three different terms (calling for

a summing block), the result of which is the equivalent force Fm experienced by the

mass. This force is then multiplied by a constant gain value (1/m). The result of that

multiplication will be a quantity equal to the time derivative of the velocity. Figure 6.5

shows a portion of a block diagram that represents Eq. (6.3).

The block diagram as shown in Fig. 6.5 is incomplete, and we need to develop both

the velocity and displacement because they are required by the damping and spring force

inputs to the summing junction. Clearly integration blocks are required for integrating the

acceleration to yield velocity and then integrating the velocity to yield the displacement.

To fully specify both integrations, the initial conditions for both variables (velocity and

displacement) must be specified, although most block diagrams do not explicitly indicate

this. Figure 6.6 shows the completed block diagram that schematically represents the

typical spring–mass–damper problem.

The dynamic response of this system is readily traced from the input Fi through the

summer, the coefficient 1/m, the first integrator, and then the second integrator. Note

the two feedback paths that go through the coefficient blocks b and k and close loops

Fi

kx1

bv1

x1

v1(0) x1(0)

v1

k

b

dv

dt
∫dt ∫dt

1 +

+

+

+

m

−

−
+

Figure 6.6. Simulation block diagram for mass–spring–damper system of Example 6.1.

6.3. Building a Simulation 147

around the integrator blocks. These loops are typical of physical systems; indeed they

are essential for the results of the integrations to be bounded over time. The significance

of such feedback connections in dynamic systems will be discussed at length in future

chapters.

6.3 BUILDING A SIMULATION

6.3.1 Structure of the Simulation: The Block Diagram

As discussed in Section 5.1, the process of integration lies at the core of simulation,

and hence the integrator blocks form the central basis of the simulation block dia-

gram. In Section 6.2 it was pointed out that the building of the simulation block dia-

gram begins by bringing in the correct number of integrator blocks (one for each state

variable) and using the block library to “build” the correct state-variable functions.

The actual mechanics of assembling the block diagram, and hence the simulation,

can vary depending on the computer package chosen. Appendices 3 and 4 of this

text contain brief tutorials for the MATLAB and Simulink simulation environment.

Regardless of which simulation package is used, the underlying structure of the

simulation is the same. In general, each state variable requires an integrator block.

The initial conditions for each state variable can be set within the block diagram or

they can be tied to the program workspace, where they can be set externally, before

each simulation run. The outputs of the integrators are the state variables themselves.

Those outputs (which can be thought of as signals on electrical lines) are then used to

“build” the derivatives (inputs to each integrator). For example, consider the spring–

mass–damper system from Example 6.1. When the displacement and velocity of the

mass are selected as the state variables, the state-variable equations for the system

are

q̇1 = q2,

q̇2 =
1

m
(Fi − b q2 − kq1). (6.4)

The parameters b and k would be implemented as gains or constant blocks con-

nected to the outputs of the integrators for the first and second states, respectively.

The outputs of the constant blocks can then be summed together (with the appro-

priate signs) by use of a summation block. The results of the summation are then

multiplied by 1/m by use of an additional gain block, which is then connected to the

input of the first integrator.

Figure 6.7 shows the simulation block diagram from Simulink modeling the

simple spring–mass–damper problem of Example 6.1. It is useful to compare the

Simulink block diagram with the block diagram in Fig. 6.6, which was originally

drawn for this system. The similarity between the two figures is a strong argument

for the popularity and utility of these packages.

Note that the integrator blocks are single-input, single-output blocks and that the

titles under the blocks can be edited by the user. These titles should be descriptive and

pertinent to the application. Convention dictates that the integrator blocks be labeled

148 Simulation of Dynamic Systems

Force In

K
−
−+

b

Damping

Displacement Monitor

Output

1/m Velocity

1
s

1
s

Stiffness

k

Figure 6.7. Simulink window showing the block diagram that represents the simulation structure
for the spring–mass–damper system.

according to the output of the integration process. Note also that the integrator blocks

are labeled “1/s.” Students who have been exposed to Laplace transform methods

will recognize 1/s as the reciprocal of the Laplace operator that represents integration

in the time domain (see Appendix 2). Although it is acceptable and common to use

such notation in the description of linear, time-invariant systems, it is not a general

notation. Laplace transform methods are not applicable to nonlinear systems, and it

is in the analysis of nonlinear systems that computer simulations have the most to

offer. It would be preferable that integrator blocks be labeled with the integration

sign followed by “dt,” as shown in Section 6.2.

6.3.2 Model Parameters

Once the block diagram has been completed (and saved to disk), numerical values

for each parameter must be set. In Simulink, one does this by double-clicking on each

block and typing the value in the appropriate window. Alternatively, the user may

enter the names of variables in these spaces. The variables can then be set within the

MATLAB workspace. This technique results in considerably improved flexibility,

particularly for parametric studies, as demonstrated in Subsection 6.5.4.

6.3.3 Initial Conditions

One can set, in a manner similar to setting parameter values, the initial conditions

for the problem by double-clicking on the integrator blocks and entering numerical

values. Alternatively, variable names can be entered in the integration blocks. The

initial variables can then be set within the MATLAB environment.

6.3.4 Inputs

In the previous sections, the structure of the simulation was defined by the block dia-

gram, model parameter values, and initial conditions. These three elements comprise

6.3. Building a Simulation 149

the minimal amount of information required for implementing a simulation. How-

ever, if external inputs are not defined, only the free or homogeneous component of

the solution will be found through the simulation. As discussed in the introductory

section of this chapter, one of the major reasons engineers turn to simulations is to

find the response of a system to inputs and forcing functions of arbitrary shape.

Simulation packages offer a variety of means of generating complex and arbitrary

inputs to excite the system. Simple inputs, such as step, sine, and square waves, are

readily available as predefined blocks. Other inputs, such as a rectangular pulse,

can be formed by use of two step-input blocks and a summing junction. The first

step input is set to take place at the beginning of the desired pulse. The second

step input is then set for the end of the pulse and summed to the first step with a

minus sign. The net effect is a rectangular pulse with adjustable magnitude and width.

Problem 6.1 at the end of this chapter examines this particular input more thoroughly.

Finally, completely arbitrary inputs can be formed from data stored in the pro-

gram workspace or in a disk file. This gives the user great flexibility in that the inputs

can be the results of other programs, data taken from the “real world,” or artificially

synthesized data.

6.3.5 Outputs

The major purpose for using a computer simulation is to study the response of a sys-

tem to inputs and initial conditions. Implicit in this procedure is the identification of

one or more system variables as output variables. Simulation packages allow various

methods for the examination of output variables within the simulation. In particular,

Simulink offers a wide variety of output blocks, including a “scope” block that acts

like an oscilloscope directly measuring and displaying the designated variable. The

time history of one or more variables can be stored to the workspace for later pro-

cessing or directly to disk for processing by other applications. Appendix 4 presents

some pertinent examples.

6.3.6 Simulation Solution Control

Up to this point, discussion has focused on those components of the simulation that

represent characteristics of the system under study. Also important is a set of param-

eters that govern the way in which the simulation package solves the differential

equations. Most simulation packages offer the user a choice of integration algorithms

(see Chap. 5) and parameters that affect the integration step size. Variable-step-size

algorithms are very powerful and are generally considered the standard approach.

As discussed in Chap. 5, the user specifies maximum and minimum step sizes and

an error tolerance that directs the software in selecting a step size within the given

range. The tighter (smaller) the tolerance, the smaller the step size. For a vast major-

ity of applications, the following five parameters define the run-time control of the

simulation.

1. Integration algorithm: Chapter 5 discusses the origins of various integration algo-

rithms in detail. Most algorithms implement an adaptive-step-size approach that

150 Simulation of Dynamic Systems

constantly adjusts the integration time step within the constraints set by the

remaining solution control parameters. Also available are algorithms specifi-

cally designed for stiff systems (ones with widely varying time scales). Section

5.6 provides some discussion of the problems posed by stiff systems.

2. Initial and final time: Nearly all simulations assume a starting time of t = 0. The

final time parameter sets the condition for stopping the computer simulation.

3. Minimum step size: This parameter sets a lower limit on the time step used

by the adaptive-step-size algorithm. This is usually set by the user on the basis

of a variety of factors, including computational efficiency. The user should be

prepared to wait as long as it takes for the computer to complete the simulation

run at the minimum time step.

4. Maximum step size: This parameter sets the upper bound on the adaptive-step-

size algorithm. Any adaptive-step-size algorithm can be converted to a fixed-

step-size algorithm if the minimum step size and the maximum step size are set

to the same value.

5. Error tolerance: As described in Section 5.4, adaptive-step-size algorithms adjust

the integration step size up or down by comparing the difference between the

values of the output for two attempted integration steps with an error tolerance.

If the relative error between the two attempts is less than the tolerance, the

step size remains the same, or is allowed to grow slightly. If not, the step size is

reduced and the process is repeated. For example, if the error tolerance is set to

1.0 × 10−4, the algorithm decreases the step size until the error is less than one

part in 10,000.

Although it is impossible to make any generalizations about the most appropriate

values of these parameters for all simulations, the following values of run-time control

parameters will serve as a good starting point for most mechanical systems. These

parameter values usually get the simulation going on the right track, and they can be

adjusted up or down depending on the requirements of the application:

Integration method: Fourth- or fifth-order Runge–Kutta

Minimum step size: 0.001 s

Maximum step size: 1.0 s

Error tolerance: 0.001

6.4 STUDYING A SYSTEM WITH A SIMULATION

Although this chapter, along with the software documentation that describes the

particular simulation package, can convey a great deal of information about the

mechanics of putting together a simulation, there are other, more subtle issues that

arise in computer-based simulations. For example, a second-order linear system like

the one shown in Example 6.1 and considered in the previous section can be described

by the input–output differential equation

m
d2x

dt2
+ b

dx

dt
+ k x = Fi(t). (6.5)

6.4. Studying a System With a Simulation 151

Transfer Fcn

1

s + 1

State-Space

x = Ax + Bu

y = Cx + Du Figure 6.8. (a) Simulink transfer function block, (b) Simulink
state-space block.

It can also be represented in state-space matrix form:

[

ẋ

v̇

]

=

⎡

⎣

0 1

−
k

m
−

b

m

⎤

⎦

[

x

v

]

+

⎡

⎣

0
1

m

⎤

⎦ Fi(t). (6.6)

Simulink offers single blocks that implement either equation in very compact and

efficient form. Equation (6.5) is easily represented as the “transfer function block”

shown in Fig. 6.8(a). Similarly, the state-space formulation of Eq. (6.6) lends itself to

the “state-space block” shown in Fig. 6.8(b).

In both cases, one enters the system parameters by double-clicking on the block

and filling in the blanks. For the transfer function block, the parameters that are

entered are the coefficients of the polynomials that make up the numerator and

denominator of the transfer function.3 The state-space block requires the parameters

in the form of the system matrices, A, B, C, and D, as described in Section 3.3.

There is an important trade-off in choosing the level of detail that will be rep-

resented in the block diagram. On one hand, using a highly structured block such as

the state-space block to represent a spring–mass–damper system brings about a very

compact block diagram. On the other hand, use of this block requires more analyti-

cal work on the part of the user, putting the equations into state-space form, such as

Eq. (6.4). It also requires that the system be linear, and, most important, it does not

allow the user to introduce other effects into the system if desired. Subsection 6.4.3

explains this point in greater detail.

6.4.1 Monitoring Indices of Performance

Another major reason for studying simulation is that it provides a flexible means of

evaluating a system with respect to various indices of performance. Again, although

the system under study may be linear, many indicators of system performance (e.g.,

power consumption) are nonlinear.

For example, suppose one wishes to study the energy dissipated in the damper in

the linear spring–mass–damper system shown in Fig. 6.1. The total energy dissipated

can be expressed as

ED =
∫ t

0

(Fdamper·v)d� =
∫ t

0

bv2d�. (6.7)

Although this is a nonlinear function of the system states, and one could deter-

mine it analytically by solving for the velocity and then evaluating the integral, this

3 The concept of a transfer function is presented in detail in Chap. 11.

152 Simulation of Dynamic Systems

Force In

K
−
−+

b

Damping

Product Energy

lost

Displacement Monitor

Output

1/m Velocity

1
s

1
s

1
s

Stiffness

k

×

Monitor

Loss

Figure 6.9. Coefficient block: (a) Constant coefficient and (b) time-varying coefficient, i.e. a
multiplier.

function is very easily incorporated into the simulation by inclusion of the appro-

priate blocks. Figure 6.9 shows the results. If the system is allowed to respond to an

initial velocity of 2 m/s, with no input, the energy loss can be seen in the plot shown

in Fig. 6.10.

6.4.2 Parametric Studies: Engineering Design

One of the most powerful applications of computer simulation is its use as a design

tool. With a well-crafted simulation, the engineer can investigate the implications of

various design changes without the costly step of prototype construction and test-

ing. One must be careful, however, in this approach. In order that the results of a

simulation be significant, it must contain sufficient detail to reflect all of the implica-

tions of the proposed design changes. In addition, the simulation must be properly

validated by means of a well-designed experimental protocol. An experienced engi-

neer will be aware of these trade-offs and will use a simulation of sufficient detail

to help define the general limitations and constraints of the design problem. In the

end, the results of most engineering design efforts remain uncertain until the actual

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.5 1 1.5 2

Time (s)

E
n
er

g
y
 l

o
ss

 i
n
 d

am
p
er

 (
J)

Figure 6.10. Time history of the energy dissipated
in the damper, as computed in the simulation
whose structure is shown in Fig. 6.3.

6.4. Studying a System With a Simulation 153

prototype is constructed and tested in its intended application. Nevertheless, the

computer simulation, particularly one constructed by means of the block-diagram-

oriented packages, offers a very valuable tool in evaluating the dynamic performance

of systems.

Once the general structure of the design is determined, the design problem

becomes one of choosing the best physical and geometric parameters that define the

system. The computer simulation can examine the dynamic response of the system

over a wide range of the parameter values, giving the engineer a great deal of infor-

mation and guidance in choosing the parameter values. Analyses that examine the

dynamic response of a system over a range of parameter values are often referred

to as parametric studies. Figure 4.13 shows a series of step responses of a second-

order system as the damping ratio changes. This is a well-known parametric study

for second-order linear systems.

6.4.3 Nonlinear Systems

Up to this point, attention has focused on the use of simulation to solve equations

similar to those solved analytically in Chap. 4. The real power of simulations lies in the

solution of nonlinear and complex systems that are not solvable by analytical means.

In this section, many common nonlinearities encountered in the study of mechanical

systems are explored. In the next and final section of this chapter, a case study that

illustrates many of these concepts is presented.

Friction. When mechanical systems are modeled, the treatment of friction is

inevitable. Unfortunately, the most common treatment of friction – viscous friction,

as seen in the well-known spring–mass–damper problem – is usually quite incor-

rect. In the vast majority of mechanical systems, the friction phenomenon is more

accurately modeled by the “dry-friction” model treated in engineering mechanics.

In engineering mechanics, friction is characterized as a force that opposes motion,

the maximum value of which is normal force times the coefficient of friction. Unfor-

tunately, dynamic models seldom include the normal forces, because they do not

directly contribute to the dynamic response that is under study. For dynamic sys-

tems, dry friction is usually assumed to have a constant value, the sign of which is

set to oppose motion. Therefore, like viscous friction, it is a function of velocity.

Unlike viscous friction, the characteristic function is flat. Figure 6.11 shows the two

characteristic curves.

Fortunately, most simulation packages offer easily implemented blocks that

model this particular nonlinearity. In Simulink, the “discontinuities” block library,

which is included in the package, allows considerable flexibility in modeling this phe-

nomenon. One approach would be to use the “sign block” (which returns 1 or −1,

depending on the sign of the block input) coupled with a gain block to bring about

the dry-friction characteristic shown in Fig. 6.11. Another approach would be to use

the “Coulomb & Viscous Friction Block,” which models the algebraic sum of the

linear and dry friction components. To demonstrate the effect of this nonlinearity,

the example that was first introduced in Fig. 6.6 is modified by replacement of the

154 Simulation of Dynamic Systems

Dry friction

Viscous friction

(slope in coefficient, b)

Velocity, m/s

0.5 10

21.5

−2

−0.5

−1

0

0.5

1

1.5

−0.5−1

2
F

ri
ct

io
n
 f

o
rc

e,
 N

Figure 6.11. Characteristic curves for viscous
(linear) friction and dry friction, which is also
known as Coulomb friction.

linear gain block, which represented the viscous-friction element, with a combined

Coulomb and viscous-friction block described by

FNLD = F0 sign(v) + bv

where F0 is the Coulomb friction force. The resultant block diagram is shown in

Fig. 6.12.

Figure 6.13 compares the step response (magnitude = 2.0, start time = 0.1 s) for

the preceding system with linear friction and with the combined Coulomb friction

and viscous-friction block. The combined friction was set to have a linear damping

coefficient of 1.0 N s/m and an offset at zero of 0.5 N. Note that the simulation that

represents the effects of both linear and dry friction is markedly different from the

response with the linear friction alone. This results partially from the fact that the

nonlinear model contains an additional damping mechanism (the dry friction), so

one would expect the transient response to die out sooner. On the other hand, the

nature of the response, particularly its relatively quick approach to steady state, is

indicative of the nonlinear nature of the problem.

Force In

K−
−
−+

Coulomb &

Viscous Friction

Displacement Monitor

Output

1/m Velocity

1
s

1
s

Stiffness

k

Figure 6.12. Block diagram showing the simulation structure that has been modified to include a
Coulomb friction block. This block represents a velocity-dependent force that is the algebraic sum
of a linear friction and a nonlinear dry-friction force.

6.4. Studying a System With a Simulation 155

0
−0.5

0

0.5

1

1.5

2

2.5

1 2

Time (s)

3 4 5

R
es

p
o
n
se

 (
m

)

Response with

linear friction

Response with Coulomb

friction

Figure 6.13. Comparison of spring–mass–
damper system step responses with linear and
nonlinear friction included.

Configuration dependence. Configuration dependence refers to systems in which

the structure and/or parameters of the model change depending on the values of

the state variables. A very common example of this type of system is the robotic

manipulator. The equations of motion that describe the behavior of robots are very

nonlinear, containing many trigonometric functions of state variables in inertial terms

as well as products and squares of state variables. This particular nonlinearity gives

rise to most of the difficulties encountered in controlling robotic systems.

Another common example of configuration dependence can be seen in systems

containing two or more bodies that are in intermittent contact, such as a mechanical

clutch. A system of this type presents some interesting challenges, which will be

investigated by means of a case study in the next section.

Other common nonlinearities. In addition to the sign and Coulomb friction blocks

just described, Simulink has a rich collection of other nonlinear general-purpose

blocks, a small sample of which are subsequently described. Figure 6.14 shows 10

blocks that model nonlinear phenomena commonly encountered in the modeling of

engineering systems. In the following discussions of the blocks, the input variable is

u and the output is y.

Saturation. The saturation block models a common nonlinear phenomenon.

Physical examples include motors that have torque limits beyond which they cannot

operate or amplifiers that can produce voltages only within specified limits. Mathe-

matically, the saturation block implements the following piecewise linear function,

sin

Trigonometric

Function

Transport

Delay

Saturation Relay

Product

MATLAB

Function

MATLAB Fcn

f(u)

Fcn

Dead Zone Backlash

|u|

Abs

Figure 6.14. Sample of other common nonlinear blocks available in Simulink.

156 Simulation of Dynamic Systems

where u is the input to the saturation block and y is the output:

y =

⎧

⎨

⎩

ymax for u ≥ uupper

u for ulower < u < uupper.

ymin for u ≤ ulower

(6.8)

Dead zone. Many systems do not respond to inputs with values very near zero.

The input must exceed some threshold value before response can be monitored.

This phenomenon is often associated with some fundamental physical event such

as dry friction, and it may be modeled with the dead-zone block. The mathematical

definition is

y =

⎧

⎨

⎩

u − uupper for u ≥ uupper

0 for ulower < u < uupper.

u − ulower for u ≤ ulower

(6.9)

Relay. Also encountered in the process industry, as well as in many very common

applications, is the relay controller. This block models the common on–off controller

module used in everything from home heating and air conditioning to chemical

process control systems. In most cases, there are two set points defined on the input

variable, one at which the system is turned on and another at which it is turned off.

Chapter 14 includes a discussion of on–off control systems.

Backlash. Similar in form to the dead-zone block is the backlash block. Whereas

the dead-zone block defines a zone of zero response when the input is in the vicinity

of zero, the backlash block defines a zone of zero change in response when the rate

of change of the input is near zero. The most common physical phenomenon that

follows this pattern is gear backlash.

Transport delay. Transport delay, also known as “dead time,” is commonly

encountered in the process industry. It is also a phenomenon seen in computer-based

control systems (see Chap. 16). The analytical definition is shown in this equation,

where the duration of the delay is td:

y(t) = u(t − td). (6.10)

Absolute value. This block takes the absolute value of the input signal:

y = |u|. (6.11)

Product. This block was used earlier in this chapter to multiply the damper

force by the velocity to produce the power dissipated in the damper. Note that this

nonlinear block, which multiplies two variables together, should not be confused

with the linear gain block, which is used to multiply a variable by a gain constant,

which is a parameter.

Trigonometric function. As its name implies, you can implement a typical trigono-

metric function, as well as some inverse trigonometric functions, by using this block.

This may be particularly useful for some robotic or vehicle applications.

Fcn. Simulink has several blocks that implement user-defined functions. The

Fcn and the MATLAB Fcn (see next subsection) are two of the most common and

6.5. Simulation Case Study: Mechanical Snubber 157

powerful blocks. The Fcn block enables the user to implement any single-line func-

tion by using MATLAB syntax. In other words, if you can write a single line of

MATLAB code, operating on the input to the block (represented as u), it can be

implemented in this block.

MATLAB Fcn. A more powerful version of theFcnblock, this block is used to call

an m-file function. Appendix 3 discusses m-files and functions implemented therein.

A very common use of the MATLAB Fcn block is to implement complex nonlinear

state equations when the mathematical descriptions are readily available.

6.5 SIMULATION CASE STUDY: MECHANICAL SNUBBER

Mechanical snubbers are common devices used to absorb large amounts of energy

through relatively short displacements. They can also be difficult to simulate because

they are active only when they are in contact with the system they are designed to

protect. To properly model such a system, one needs to simulate both the unsnubbed

system and the system while the snubber is engaged. In general, this requires the

solution of at least two different sets of equations and switching between them when

certain conditions are met. Figure 6.15 shows a highly idealized schematic of a snubber

application. A mass m has acquired a certain amount of energy and at t = t0 is moving

at velocity v0 at an initial displacement of x0, which is greater than xsnub. The mass

is suspended on an ideal spring k1 and has no means of dissipating energy without

the snubber. The drawing shows that once the displacement of the mass falls below

the value of xsnub the mass is in contact with the snubber, which is represented as a

spring and damper in parallel. During the time when x is less than or equal to xsnub,

the snubber is in contact with the mass and can exert a force Fsnub on it. Eventually,

the mass slows to zero velocity and begins to move upward under the influence

of the springs. While moving with a positive velocity, the damper within the snubber

may dominate the response and allow the mass to lose contact with the snubber.

Another way of thinking about this is to note that the snubber cannot pull on the

mass, but can only push it. Clearly this system cannot be represented by a simple set

of linear differential equations. However, a computer simulation, which can monitor

the nature of the contact between the mass and the damper, is an appropriate tool

to use in studying this system.

6.5.1 Modeling the System

The first step in any simulation process is to write the correct equations describing

the behavior of the system. Even though there are three energy-storing elements

in the system, only two state equations are required for describing its behavior. The

reason behind this discrepancy is that both springs are active only when the snubber

is engaged. During that time, the springs experience the same relative displacement

and therefore are not independent. A single state variable describes their energy

storage.

Regardless of whether or not the snubber is in contact with the mass, the first

state equation is the same:

ẋ = v. (6.12)

158 Simulation of Dynamic Systems

m

k1

b

Snubber

k2

(se)

x

x = xsnub

Figure 6.15. Schematic representation of a
mass–snubber system.

The second equation can be stated in general form as

v̇ =
1

m
(Fk1 + Fsnub), (6.13)

where

Fk1 = −k1x, (6.14)

Fsnub =
{

0 for x > xsnub

max [0, −k2(x − xsnub) − bv] for x ≤ xsnub
. (6.15)

It is interesting to note that the individual elements of the system, and all the

equations that describe their behavior, are linear but that the system itself is nonlinear

because the equations that describe the system change depending on the values of

one of the states (in this case, the displacement.)

There are several ways to simulate this particular kind of nonlinearity. In the

next subsections, different approaches are explored.

6.5.2 Block-Diagram Approach to Simulation Structure

Earlier in this chapter, a sampling of the nonlinear blocks available in Simulink

was presented. All of the operations required for implementing the conditions of

Eqs. (6.15) are available in simple block elements.

Specifically, the “switch” block accomplishes the condition testing shown in

Eqs. (6.15). The switch block, shown in Fig. 6.16, has three inputs and one output.

This block alternately routes the first or third (top or bottom) input to the output,

depending on the value of the middle input line relative to some internally set thresh-

old (the details of the switching condition are set in a dialog box when the switch

block is double-clicked). If the switching condition is met, the first input (top signal)

is routed to the output. On the other hand, if the condition is not met, the block

switches over and routes the bottom signal.

This simulation will require two such switch blocks. The first ensures that the

snubber force is applied only if the simulation finds that the mass is engaged with

the snubber (x < xsnub). The second ensures that, if the snubber is engaged, it will

not generate a negative force. Figure 6.17 shows the complete block diagram for

6.5. Simulation Case Study: Mechanical Snubber 159

Input 1

Input 2

Input 1

or

Input 2

ConditionSwitch

Figure 6.16. A Simulink “switch” block.

Fsnub

max(,)
contact

-0.05Xsnub

1
s

Velocity

Scope

0

Null

50

K2

10

K1

simout

For Plotting

1
s

Displacement

50

B

1

1/mass

Figure 6.17. Simulink block diagram for the snubber system shown in Fig. 6.15.

a simulation of the snubber system. The portion of the diagram that models the

snubber performance is highlighted by the dashed box (see Table 6.1 for values of

parameters).

Figure 6.18 shows the displacement of the mass, starting at 0.05 m, and an initial

velocity of −0.5 m/s. Close examination of the velocity and displacement curves

reveals the times when the switches were used. At approximately 0.2 s (point A on

the graph), the mass comes into contact with the snubber and the velocity moves

sharply toward zero. As the snubber dissipates the energy of the mass, it slows the

motion and reverses its direction. At approximately 0.27 s (point B), the mass is

moving away from the snubber and the snubber cannot keep up, so Fsnub falls to

zero, even though the mass is still within the range of the snubber until 0.43 s (point

C). These changes in the snubber force are more clearly indicated by the plot of Fsnub

in Fig. 6.19.

6.5.3 Alternative Approach to Configuration Dependence

The previous section demonstrated how block diagram tools can be used to model

the mechanical snubber system, which has very pronounced nonlinearities. In this

section, an alternative approach is presented that illustrates the flexibility of the

160 Simulation of Dynamic Systems

Table 6.1. Model parameters, initial conditions, and simulation control parameters for

the model shown in Fig. 6.17

Symbol Value

Model parameters m 1 kg
k1 10 N/m
k2 50 N/m
b 50 N s/m
xsnub −0.05 m

Initial conditions x(0) 0.05 m
v(0) −0.5 m/s

Simulation parameters Integration method ODE 45 (Dormand–Price)
Minimum step 0.00001 s
Maximum step 0.01 s
Error tolerance (relative) 1 × 10−6

Error tolerance (absolute) 1 × 10−6

Final time 1.5 s

MATLAB environment. In this approach, the mathematical description of Eqs. (6.14)

and (6.15) is modeled directly in a user-defined function.

As discussed in Subsection 6.4.3, Simulink has special blocks that allow users to

write their own functions as script files that are then called from the simulation. In the

case of the snubber, one of these functions is used to compute the force exerted by

the snubber on the mass, Fsnub, as a function of the displacement and the velocity of the

mass. Table 6.2 shows the MATLAB script that implements the function fsnub(u),

where u is the vector of displacement and velocity. Figure 6.20 shows the Simulink

block diagram utilizing this approach to simulation.

It is left to the student to verify that the two simulations (Figs. 6.20 and 6.17) lead

to the same solutions of the model equations.

0 0.5 1 1.5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time(s)
A B C

Displacement(m)

Velocity (m/s)

Figure 6.18. Response of the system shown in Fig. 6.15.

6.5. Simulation Case Study: Mechanical Snubber 161

0 0.5 1 1.5
0

5

10

15

20

25

Time(s)

F
o
rc

e
 (

N
)

Figure 6.19. Plot of snubber force vs. time showing the onset of snubber contact and the point at
which the computed snubber force is no longer positive (and hence set to zero).

6.5.4 Parametric Study – Running Simulation from a Script

In this section, a parametric study of the snubber shown in the previous subsection

is performed. The snubber is defined by two parameters: its stiffness and its damping

constant. The performance of the snubber may be indicated by any one of a number

of variables that could be computed from the system response. Because snubbers

are often used to protect an object from coming into contact with another one (as a

doorstop protects the woodwork behind an open door) the maximum deflection of

the snubber will be chosen as the index of performance. If the simulation produces

Fsnub

1
s

Velocity

Scope

MATLAB

Function

MATLABFcn

10

K1

simout

For Plotting

1
s

Displacement

1

1/mass

Figure 6.20. Simulink model using the MATLAB function block to compute Fsnub.

162 Simulation of Dynamic Systems

Table 6.2. MATLAB function script to compute snubber force

function [force]=fsnub(u)

%

% FSNUB computes the nonlinear force for snubber simulation

%

% Computes the snubber force as a function of

% displacement and velocity

%

% u(1) = displacement u(2) = velocity

%

xsnub = −0.05; % Location of snubber

k2 = 50.0; % Spring constant (N/m)

b = 50.0; % Damping (Ns/m)

%

if u(1) > xsnub

force = 0.0; % not in contact

else

force = k2*(xsnub−u(1))−b*u(2);
end;

%

% Snubber cannot exert a negative force

%

if force < 0

force = 0;

end;

a column matrix, X, in which it stores the displacement of the mass over time, then

the maximum deflection of the snubber can be found with the following expression:

xmax = xsnub − min(X). (6.16)

In other words, find the minimum value of the displacement in the solution, then

subtract it from the location of the snubber to find the maximum displacement.

It will be assumed that values of stiffness from 1 to 50 N/m are representative of

materials that may be used for the snubber. Likewise, values of damping from 1 to

50 N s/m will be investigated. To span those ranges, two row matrices are defined to

contain the possible values that will be simulated:

kall =
[

1 10 20 30 40 50
]

,

ball =
[

1 10 20 30 40 50
]

.

One approach to performing this parametric study is to go to the Simulink model,

open the appropriate gain blocks by double-clicking, enter the appropriate stiffness

and damping values, run the simulation, and analyze the results. This process would

have to be repeated for each of the 36 combinations of representative parameter

values in order to develop a complete picture of the system.

Fortunately, one can automate this approach of tediously rerunning the simula-

tion for each combination of parameters by writing a script file that sets parameter

values, runs the simulation, and stores the results. This approach requires the follow-

ing features.

6.5. Simulation Case Study: Mechanical Snubber 163

Fsnub

1

Out1

max(,)
contact

1
s

Velocity

Scope

0

Null

k2

K2

10

K1

simout

For Plotting

1
s

Displacement

b

B

1

1/mass

X snub

Figure 6.21. Simulink block diagram of the snubber simulation with the output block inserted on
the displacement signal (highlighted in dashed block).

� The model parameters that are to be varied (in this case, k2 and b) must be

represented by workspace variables, not numerical values, in the Simulink model.

In other words, the gain blocks that represent k2 and b must refer to workspace

variables (good names for these would be k2 and b), not the numbers that were

used when the simulation was first run.
� The physical variable that contains the information of interest on system perfor-

mance should be routed to a Simulink “out” block. This block defines the output

of the simulation that will be returned to the calling script.

Figure 6.21 shows the simple modification of the simulation to incorporate these

changes.

Table 6.3 shows the MATLAB script that performs the parametric study using

the simulation represented in Fig. 6.21.

The last statement in the script file plots the maximum displacement for each

combination of parameters vs. both the k2 and b values by using a three-dimensional

mesh plot, shown in Fig. 6.22

Figure 6.22 highlights the power of an automated parametric study. Not only

does the plot quickly indicate those conditions under which the displacement is very

large, but it also defines the interaction between the two parameters. For example, it

can be seen that the response is not at all sensitive to differences in damping when

k2 is large. This is indicated by the fact that the surface is flat for all values of b when

k2 is 50 N/m. On the other hand, when k2 is small, there is a noticeable influence of b

on the response. Likewise, the response is more sensitive to changes in k2 when b is

small than when b is large, although those trends are not as significant. In conclusion,

parametric studies offer a valuable tool for engineering analysis and design. As long

as the desired performance features can be reduced to one or two performance

indices, those indices can be computed for a wide range of parameter values and

164 Simulation of Dynamic Systems

Table 6.3. MATLAB script file for the parametric study using the sim command to call

a Simulink simulation

%

% M-file to to perform parametric study of snubber

%

X0 = 0.05;

Xsnub= −0.05;
%

maxd=zeros(6,6); % matrix to store max displacements

% for each run

kall=[1 10 20 30 40 50]; % values of stiffness to be used

ball=[1 10 20 30 40 50]; % values of damping to be used

%

for i=1:6;

for j=1:6;

b=ball(j);

k2=kall(i);

[T,Y]=sim(‘Chapt6–CS–O’,2); % run the simulation for 2 seconds

maxd(i,j)= Xsnub- min(Y(:,1)); % find max displacement

end

end

meshz(kall,ball,maxd); % plot results

combinations of those values and an overall picture of system performance can be

viewed through a single plot.

6.6 SYNOPSIS

The use of block-diagram-oriented computer applications for the simulation of

dynamic systems was presented. It was noted that, although a wide variety of com-

mercial packages are available for the rapid construction and execution of simula-

tions, they share certain common elements. In all cases, the differential equations are

represented by means of a block diagram, constructed from a library of blocks rep-

resenting many linear and nonlinear elements. Numerical values for the parameters

that characterize each element must be provided. Initial conditions for the prob-

lem must also be defined by the user. For systems that respond to external inputs,

the inputs must be defined and the user must select which variables from the block

diagram are to be plotted or stored for later analysis. Finally, the user must direct

the simulation package in its numerical solution of the equations by selecting the

integration method and parameters that control the integration step size.

Several examples were presented in the Simulink–MATLAB environment, and

it was shown that simulations can be used for a variety of engineering analyses.

Finally, the ability to extend the block-diagram-oriented packages by user-

defined functions and scripts was discussed. This flexibility is crucial for a truly

general-purpose simulation package.

Problems 6.1–6.3 165

0
10

20
30

40
50

10
20

30
40

50

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

b (N s/m)K2 (N/m)

M
a

x
D

is
p

l.
 (

m
)

Figure 6.22. Results of the parametric study showing maximum snubber displacement as a function
of the stiffness and damping of the snubber.

PROBLEMS

6.1 Construct a simulation of the spring–mass–damper problem described in

Example 6.1. Using two “step” function blocks and a summing junction, construct a

rectangular pulse input (see the theoretical discussion in Section 4.3). Execute several

simulation runs, each time making the pulse width narrower (shorter duration) and the

pulse magnitude larger. Keep the integral of the pulse constant. Continue this process

until the response no longer exhibits any appreciable changes for narrower pulses. What

is the common name of the response you computed?

6.2 Modify the spring–mass–damper model shown in Fig. 6.12 so that only dry (Coulomb)

friction of unity magnitude is modeled. Comparing the response to a system with pure

linear (viscous) damping of the same magnitude, what conclusions can you draw about

the energy dissipating effects of dry vs. linear friction?

6.3 Modify the spring–mass–damper model shown in Fig. 6.12 to incorporate a more

sophisticated friction model, as shown in Fig. P6.3. This model attempts to represent the

“breakaway” friction that causes a higher force to start the body from zero velocity.

The friction force can be defined analytically:

F f =
{

6.25v2 − 5v + 2 for v > 0

−6.25v2 − 5v − 2 for v ≤ 0
. (6.17)

166 Simulation of Dynamic Systems

4

3

2

1

0

−1

−2

−3

−4
−1 −0.5 10.50

Velocity (m/s)

F
o
rc

e
(N

)

Figure P6.3.

Examine the response of the modified system model to step inputs and sinusoidal inputs.

6.4 Modify the spring–mass–damper model shown in Fig. 6.12 to include a nonlinear

“stiffening” spring. Use the following relationship for the spring force:

Fspring = x3.

Examine the responses of this system to step and sinusoidal inputs and compare them with

those of the linear model. In particular, focus on steps and sinusoidal inputs of various

amplitudes.

6.5 Construct a simulation model of the vehicle suspension system described in Problem

2.7. Use a random-noise function (available from the simulation package block library) for

the wheel vertical position x. Examine the responses of the system to various amplitudes

of input. How can this model be modified to detect the suspension “bottoming out” (when

the spring compresses to its solid height)?

6.6 Construct a simulation model of the torsional system with nonlinear damping

described in Problem 2.8. The system parameters are J1 = 0.01 N m s2/rad, J2 =
0.1 N m s2/rad, K = 20 N/rad. The input torque, Ts, undergoes a step change from 0

to 0.2 N m at time t = 0. Find the step response of the system for values of C ranging

from 0.5 to 5.0 N m s/rad.

6.7 Building on the case study in Section 6.5, perform a parametric simulation study

on the snubber to find the maximum velocity that the mass can have on coming into

contact with the snubber and not have the snubber experience a displacement greater than

0.025 m.

6.8 Starting with the parameterized version of a second-order system model [Eq. (4.63)],

construct a simulation to compute the step response of this system and use it to perform

a parametric study for various values of the damping ratio (�). Plot the resulting step

responses on a single graph and compare them with Fig. 4.13.

6.9 Construct a simulation of the nonlinear system that was linearized in Example 2.8.

Use the simulation to compute the response of the system to a step change in force from

F = 0.1 N to F = 0.2 N. Repeat the process for a number of step changes, all starting at

0.1 N, but rising to 0.4, 0.5, 0.8, 1.0, and 5.0 N. Compare the nature of the combined

responses and compare them with the responses predicted by the linearized model (which

Problems 6.9–6.12 167

was derived in the example). What do you conclude about the applicability of the lin-

earized model?

6.10 Using the “switch” blocks shown in the snubber case study (Section 6.5), build a

simulation of a bouncing basketball. Assume one-dimensional motion (only in the vertical

direction) and that the ball has a mass of 600 g. Using both the simulation and careful

field observations, find appropriate values of stiffness and damping that characterize the

ball while it is bouncing off the floor. (Alternatively, use a soccer ball with a mass of

430 g.)

6.11 Construct a simulation of the system described in Problem 4.14. Show the step

response of the system to a sudden change in torque. Use the simulation to find the value

of damping b that will lead to a critically damped response. Compare this result with the

answer for part (d) in Problem 4.14.

6.12 Construct a simulation of the system described in Problem 4.15, using the parameter

values indicated there. Simulate the step response of the system for those values and for

cases in which the shaft is twice as stiff and half as stiff. Plot the three step responses on

the same graph.

7

Electrical Systems

LEARNING OBJECTIVES FOR THIS CHAPTER

7–1 To recognize the A-, T- and D-type elements of electrical systems.

7–2 To develop the mathematical equations that model the dynamic behavior of

RLC electrical circuits.

7–3 Develop the equations that describe the dynamic behavior of RLC circuits with

time-varying capacitors and inductors.

7–4 Analyze simple operational-amplifier circuits.

7.1 INTRODUCTION

The A-type, T-type, and D-type elements used in modeling electrical systems, which

correspond to the mass, spring, and damper elements discussed in Chap. 2, are the

capacitor, inductor, and resistor elements.

A capacitor, the electrical A-type element, stores energy in the electric field

induced in an insulating medium between a closely spaced pair of conducting ele-

ments, usually plates of metal, when opposite charges are applied to the plates.

Capacitance is a measure of the ability of a capacitor to accept charge and hence

its ability to store energy. It occurs naturally between the conductors of a coaxial

cable, between closely spaced parallel cables, and in closely packed coils of wire. In

these cases the capacitance is distributed, along with resistance and inductance, along

the line, and the analysis of such situations is beyond the scope of this text. How-

ever, in some cases the resistance and inductance are negligible, making it possible to

use a lumped-capacitance model. More frequently, specially designed off-the-shelf

capacitors are used that have negligible inductance and series resistance. In addition,

the dielectric material between the plates is such a good insulator that the parallel

leakage resistance between the plates is essentially infinite; thus it takes a very long

time for a charge to leak away internally.

An inductor, the electrical T-type element, stores energy in the magnetic field

surrounding a conductor or a set of conductors carrying electric current (i.e., flow

of charge). Inductance is a measure of the ability of an inductor to store magnetic

energy when a current flows through it. Like capacitance, inductance occurs natu-

rally in coaxial cables, long transmission lines, and coils of wire. Here it is usually

distributed along with capacitance and resistance, requiring a level of modeling and

analysis that is beyond the scope of this text. Often, however, the case is such that the

168

7.2. Diagrams, Symbols, and Circuit Laws 169

capacitance and resistance are negligible and a lumped-inductor model will suffice.

Even if resistance is distributed along with the inductance, a series lumped-inductor,

lumped-resistor model will be suitable.

A resistor, the electrical D-type element, dissipates energy, resulting in heat

transfer to the environment equal to the electric energy supplied at its terminals.

Resistance is a measure of how much voltage is required to driving one ampere

(1 amp) of current through a resistor. It occurs naturally in all materials (except

superconducting materials), including wires and metal structural elements. When

resistance occurs in wires intended for conducting electricity, it is usually an unwanted

phenomenon. In many other cases, resistance is necessary to accomplish circuit

requirements, and a wide variety of resistors are available as off-the-shelf compo-

nents, each type specially designed to provide needed characteristics. Carbon in some

form is often used as the resistive medium, but coils of wire often serve this purpose,

especially when a great deal of heat must be dissipated to the environment. Incan-

descent light bulbs are sometimes used as resistors, but they are very nonlinear.

This chapter deals only with lumped models made up of combinations of ideal

electrical elements, which constitute a great majority of the electrical control systems

encountered by engineers and scientists.

7.2 DIAGRAMS, SYMBOLS, AND CIRCUIT LAWS

All three of the basic types of circuit elements discussed in Section 7.1 are two-

terminal elements, as shown schematically in Fig. 7.1. The electric potential at each

terminal is measured by its voltage with respect to ground or some local reference

potential, such as a machine frame or chassis. The rate of flow of electrical charge

through the element in coulombs per second is measured in terms of amperes. The

elemental equation usually takes the form

eA = f1(iA) or iA = f2(eA), (7.1)

where eA is the voltage across element A between terminals 1 and 2:

eA = e12 = e1g − e2g. (7.2)

The symbol e1g represents the voltage between terminal 1 and ground, and e2g rep-

resents the voltage between terminal 2 and ground.

In addition, there are two types of ideal source elements used for driving circuits,

shown in Fig. 7.2. The ideal voltage source es is capable of delivering the designated

voltage regardless of the amount of current i being drawn from it. The ideal current

source is is capable of delivering the designated current, regardless of the voltage

required for driving its load.

Two-terminal

element A(1)

(g)

(2)
++

iA

e2ge1g

Figure 7.1. Circuit diagram of a two-terminal elec-
trical element.

170 Electrical Systems

+
+

i = load current

(1)

(2)

es = e12es

+

i = is

(1)

(2)

e12 = load

voltage
is

Figure 7.2. Circuit diagrams of voltage and
current sources.

The two basic circuit laws needed to describe the interconnections between the

elements of a circuit are known as Kirchhoff’s voltage law and Kirchhoff’s current

law. The voltage law says that the sum of the voltage drops around a loop must equal

zero [Fig. 7.3(a)]. A corollary to the voltage law is that the total voltage drop across

a series of elements is the sum of the individual voltage drops across each of the

elements in series [Fig. 7.3(b)].

The current law states that the sum of the currents at a node (junction of two or

more elements) must be zero. This law is illustrated in Fig. 7.4.

7.3 ELEMENTAL DIAGRAMS, EQUATIONS, AND ENERGY STORAGE

7.3.1 Capacitors

The circuit diagram of an ideal capacitor is shown in Fig. 7.5. The elemental equation

in terms of the stored charge qC of a capacitor is

qC = C(e1g − e2g) = CeC, (7.3)

where eC is the voltage across the capacitor, eC = e1g − e2g = e12.

In terms of current iC (rate of flow of charge qC), the elemental equation is

iC = C
deC

dt
. (7.4)

Note the similarity to the elemental equation for an ideal mass given in Chap. 2.

Because iC is a through (T) variable and eC is an across (A) variable, the capacitor C is

said to be analogous to the mass m. Thus the state variable for a capacitor is its voltage

eC. However, the capacitor is different in one respect: Both of its terminals can “float

above ground” – that is, neither must be grounded – whereas the velocity for a mass

must always be referred to a nonaccelerating reference such as the earth (ground).

eg1 + e12 + e2g = 0 or

e1g = e
12

 + e2g

e14 = e12 + e23 + e34

(a) (b)

(g)

(1)

(1)
A B CA

B

C

(g)

(2)

(2) (3) (4)

Figure 7.3. Illustration of Kirchhoff’s voltage law for elements in a loop and for several elements
in series.

7.3. Elemental Diagrams, Equations, and Energy Storage 171

iA + iB + iC = 0 or

iA = −i
B

 − iC

A B

C

(1) (2)

(3)

(4)

iA

iC

iB

Figure 7.4. Illustration of Kirchhoff’s current
law.

The comments made in Chapter 2 about the response of a mass m to an input

force apply here to the response of a capacitor C to an input current – it takes time

for a finite current to change the charge stored in, and hence the voltage across the

terminals of, a capacitor.

The energy stored in a capacitor resides mainly in the very closely confined static

field between the plates of the element, and it is often referred to as static field energy.

The dielectric material between the plates is a very good insulator, so that very, very

little current can flow (i.e., leak) directly from one plate to the other. The current iC
simply represents the rate of flow of charge to and from the plates where the charge

is stored.

The stored electric-field energy is given by

�e =
C

2
e2

C. (7.5)

Here again it is apparent that imposing a sudden change in the voltage across a

capacitor would not be realistic, because this would mean suddenly changing the

stored energy, which would require an infinite current, i.e., an infinite power source.

7.3.2 Inductors

The circuit diagram of an ideal inductor is shown in Fig. 7.6. The elemental equation

in terms of the flux linkage � of the coil is

� = LiL. (7.6)

In terms of the voltage across the inductor, eL = e1g − e2g = e12 = d�/dt , the ele-

mental equation is

eL = L
diL

dt
. (7.7)

iC = dqC/dt

e1g e2g

+ +
(1)

(g)

(2)
C

Figure 7.5. Circuit diagram of an ideal capacitor.

172 Electrical Systems

iL

e1g e2g

+ +
(1)

(g)

(2)L
Figure 7.6. Circuit diagram of an ideal inductor.

Note the similarity to the elemental equations for an ideal spring. Because iL is a T

variable and eL is an A variable, an inductor is said to be analogous to a spring, with

L corresponding to 1/k. Thus the state variable for an inductor is its current iL.

The energy stored in an inductor is stored in the magnetic field surrounding its

conductors, and is known as magnetic-field energy. The stored magnetic-field energy

is given by

�m =
L

2
i2

L. (7.8)

It can be seen from Eq. (7.8) that to try to make a sudden change in the current

through an inductor would not be realistic. Such a change would involve a sudden

change in the stored energy, which would in turn require an infinite voltage and hence

an infinite power source.

The magnetic field, which is induced by the current iL flowing in many turns of

a densely packed coil, is intensified if a ferromagnetic metal core is installed within

the coil. Air core inductors are usually linear, but contain the inherent resistance of

the coil wire, which may not be negligible. This parasitic resistance is modeled by an

ideal resistor in series with the inductance of the coil.

When the core is a ferromagnetic material, the inductance for a given coil current

is much greater and the ability of the inductor to store energy is much greater, but

a ferromagnetic core also introduces nonlinearity and hysteresis in the flux linkage

versus current relationship so that Eq. (7.6) becomes

� = fNL(iNLI) (7.9)

Compared with the variety and quantities of capacitors and resistors available as

off-the-shelf elements, the probability of finding off-the-shelf inductors for specific

applications is quite small. Thus inductors are usually custom designed and manu-

factured for each specific application.

7.3.3 Transformers

When two coils of wire are installed very close to each other so that they share the

same core without flux leakage, an electric transformer results, as shown schemat-

ically in Fig. 7.7. Because a transformer is a four-terminal element, two elemental

equations are needed to describe it. The elemental equation is1

e12 = ne34,

eo = nei , (7.10)

1 The ideal relations used here are applicable only when time-varying voltages and currents, such as ac

signals, occur. See G. Rizzoni, Principles and Applications of Electrical Engineering, 5th ed. (McGraw-

Hill, New York, 2005), p. 309.

7.3. Elemental Diagrams, Equations, and Energy Storage 173

ia ib

(1)

(2)

(3)

(4)
1 : n

n = ratio of turns between (3) and (4)

to turns between (1) and (2)

Figure 7.7. Circuit diagram of an ideal transformer.

where n is the ratio of the number of turns between terminals (3) and (4) to the

number of turns between (1) and (2), and

ib =
1

n
ia . (7.11)

The dots appearing over each coil indicate that the direction of each winding is

such that n is positive; in other words, e12 has the same sign as e34 and ia has the same

sign as ib.

Ideal transformers do not store energy and are frequently used to couple circuits

dynamically. Combining Eqs. (7.10) and (7.11) reveals the equality of energy influx

and efflux:

e34ib = ne12
1

n
ia . (7.12)

7.3.4 Resistors

The circuit diagram of an ideal resistor is shown in Fig. 7.8. The elemental equation

for an ideal resistor can be written either as

e12 = RiR (7.13)

or as

iR =
1

R
eR, (7.14)

where eR is the voltage across the resistor, eR = e1g − e2g = e12. Note that the voltage

across and the current through a resistor are related “instantaneously” to each other,

because there is no energy storage, and no derivative of either eR or iR is involved in

these equations.

The manner in which a source voltage in a circuit consisting of several resistors in

series is distributed among the resistors is described mathematically by a very useful

formula known as a voltage-divider rule. Consider the circuit with two resistors in

series, R1 and R2, shown in Fig. 7.9.

iR

e1g e2g

+ +
(1)

(g)

(2)R Figure 7.8. Circuit diagram of an ideal resistor.

174 Electrical Systems

R1

R2

i

es (2)

(g)

+

eR1

(1)

eR2

+

+

−

−

−

Figure 7.9. Circuit with two resistors in series.

The elemental equations for the two resistors are

eR1 = R1i, (7.15)

eR2 = R2i, (7.16)

where eRi = e12 and eR2 = e2g.

The current in the circuit is

i =
es

R1 + R2
. (7.17)

Substituting the expression for i into Eqs. (7.15) and (7.16) gives

eR1 =
R1

R1 + R2
es, (7.18)

eR2 =
R2

R1 + R2
es . (7.19)

The results obtained in Eqs. (7.18) and (7.19) are examples of the voltage-divider

formula, which for a circuit with n resistors in series takes the following mathematical

form:

eRi =
Ri

R1 + R2 + · · · + Rn

es, i = 1, 2, . . . , n. (7.20)

Expressed verbally, the voltage-divider formula states that, in a circuit consisting of

n resistors in series, the voltage across an ith resistor is equal to the source voltage

times the ratio of the ith resistor over the sum of all resistors in series.

Although many resistors are carefully designed and manufactured to be linear,

many others are inherently or intentionally nonlinear. The circuit diagram to be used

here for a nonlinear resistor (NLR) is shown in Fig. 7.10.

The elemental equation for such a nonlinear resistor is written as either

eR = fNL(iNLR) or iNLR = f −1
NL(eR). (7.21)

When Eq. (7.21) is linearized, for small perturbations about an operating point,

êR = Rinc îNLR, (7.22)

7.4. Analysis of Systems of Interacting Electrical Elements 175

iNLR

e1g e2g

+ +
(1)

(g)

(2)NLR
Figure 7.10. Circuit diagram of a NLR.

where the incremental resistance Rinc is given by

Rinc =
dfNL

diNLR

∣
∣
∣
∣
iNLR

. (7.23)

7.4 ANALYSIS OF SYSTEMS OF INTERACTING ELECTRICAL ELEMENTS

Electrical systems are usually referred to as electric circuits, and the techniques of

analyzing electric circuits are very similar to those used in Chap. 2 for analyzing

mechanical systems: Simply write the equation for each element and use the appro-

priate connecting laws (Kirchhoff’s laws here) to obtain a complete set of n equations

involving the n unknowns needed to describe the system completely; then combine

(if everything is linear) to eliminate the unwanted variables to obtain a single input–

output differential equation relating the desired output to the given input(s). If only

a set of state-variable equations is needed, it is usually most convenient to “build” a

state-variable equation around each energy-storage element, in which case nonlin-

earities are easily incorporated.

EXAMPLE 7.1

Find the input–output differential equation relating eo to es for the simple RLC circuit

shown in Fig. 7.11.

SOLUTION

For the source,

es = e1g. (7.24)

For the resistor R1,

iR1 =
1

R1
(e1g − e2g). (7.25)

iR1

iL

R1

R2

L

es eo = e2g

+

(1)

(g)

(2)

(3)
C iC

Figure 7.11. Circuit diagram of an RLC cir-
cuit.

176 Electrical Systems

For the inductor L,

e2g − e3g =
diL

dt
. (7.26)

For the resistor R2,

e3g = R2iL. (7.27)

For the capacitor C,

ic = C
de2g

dt
. (7.28)

At node 2,

iR1 = iL + iC. (7.29)

Equations (7.24)–(7.29) comprise a set of six equations involving six unknown

variables: e1g, e2g, e3g, iR1, iL, and iC . (Note that using iL to describe the current through

both L and R2 satisfies Kirchhoff’s law at node 3 and eliminates one variable and one

equation.)

The node method2 may be applied to node 2 to eliminate the unwanted variables e1g,

e3g, iR1, iL, and iC . Substituting for iR1 from Eq. (7.25) and for iC from Eq. (7.28) into Eq.

(7.29) yields

1

R1
(e1g − e2g) = iL + C

de2g

dt
. (7.30)

Then, using Eq. (7.24) for elg and rearranging Eq. (7.30) yields

iL =
1

R1
es −

1

R1
e2g − C

de2g

dt
. (7.31)

Differentiating Eq. (7.31) with respect to time gives

diL

dt
=

(
1

R1

)

des

dt
−

(
1

R1

)

de2g

dt
− C

d2e2g

dt2
. (7.32)

Combine Eqs. (7.26) and (7.27) to solve for e2g:

e2g = L
diL

dt
+ R2iL. (7.33)

Substitution from Eqs. (7.31) and (7.32) into Eq. (7.33) then eliminates iL:

e2g =
(

L

R1

) (

des

dt
−

de2g

dt

)

− LC
d2e2g

dt2
+

(

R2

R1

)

(es − e2g) − R2C
de2g

dt
. (7.34)

Collecting terms and noting that eo is the same as e2g, we have

LC
d2eo

dt2
+

(

L

R1
+ R2C

)

deo

dt
+

(

1 +
R2

R1

)

eo =
R2

R1
es +

L

R1

des

dt
. (7.35)

2 The node method starts by satisfying Kirchhoff’s current law at each node and then uses the elemental

equation for each branch connecting to each node.

7.4. Analysis of Systems of Interacting Electrical Elements 177

R2

R1 L

eo

+

(g)

(1)

(2)

(3)

C

iI iII

is Figure 7.12. A different R, L, C circuit, driven
by a current source.

EXAMPLE 7.2

Develop the input–output differential equation relating eo to is for the circuit shown in

Fig. 7.12.

SOLUTION

Here the loop method3 is used and the elemental equations are developed as needed for

each loop. Like the use of the node method, the use of the loop method helps to eliminate

quickly the unwanted variables. The two loops, I and II, are chosen as shown in Fig. 7.12,

carrying the loop currents iI and iII. Loop I is needed only to note that iI = is . Using

Kirchhoff’s voltage law for loop II yields

R2iII + L
diII

dt
+

(

1

C

) ∫

iIIdt + R1(iII − is) = 0. (7.36)

Because iII = Cdeo/dt , substituting for iII in Eq. (7.36) yields

(R1 + R2)C
deo

dt
+ LC

d2eo

dt2
+ eo = R1is . (7.37)

Rearranging, we have

LC
d2eo

dt2
+ (R1 + R2)C

deo

dt
+ eo = R1is . (7.38)

EXAMPLE 7.3

(a) Write the state-variable equations based on the energy-storage elements L and C for

the circuit shown in Fig. 7.13(a).

(b) Linearize these equations for small perturbations of all variables.

(c) Combine to eliminate the unwanted variable and obtain the input–output system

differential equation relating the output ê2g to the input ês(t).

(d) Draw the simulation block diagram for the linearized system.

SOLUTION

(a) In general, the state-variable for a capacitor is its voltage e2g, and the state variable

for an inductor is its current iL. Thus, for the inductor L,

3 The loop method starts by satisfying Kirchhoff’s voltage law for each independent loop and then uses

the elemental equations for each part of each loop.

178 Electrical Systems

R1

es(t)

e23 = fNL(iL)

eo, output

+

+

(g)

(2)

(1)

(3)

NLR

C iC

L iL

iR1

Figure 7.13(a). Electric circuit with NLR.

diL

dt
=

1

L
(e2g − e23)

or

diL

dt
=

−1

L
fNL(iL) +

1

L
e2g, (7.39)

and for the capacitor C,

de2g

dt
=

1

C
(iR1 − iL)

or

de2g

dt
=

1

C

(

es − e2g

R1
− iL

)

.

Rearranging yields

de2g

dt
=

(

−1

C

)

iL +
(

−1

R1C

)

e2g +
(

1

R1C

)

es . (7.40)

Note that Eqs. (7.39) and (7.40) comprise a set of nonlinear state-variable equations

for the circuit.

Because of the nonlinear function fNL(iL), Eqs. (7.39) and (7.40) cannot be com-

bined to eliminate iL until they are linearized for small perturbations of all variables.

(b) After linearizing, Eqs. (7.39) and (7.40) become

dîL

dt
=

(

−1

L

)

de23

diL

∣

∣

∣

∣

i L

îL +
(

1

L

)

ê2g, (7.41)

dê2g

dt
=

(

−1

C

)

îL +
(

−1

R1C

)

ê2g +
(

1

R1C

)

ê2g. (7.42)

(c) Equations (7.41) and (7.42) may now be combined as follows to eliminate îL. Solving

Eq. (7.42) for îL yields

îL = −C
dê2g

dt
−

(

1

R1

)

ê2g +
(

1

R1

)

ês .

7.5. Operational Amplifiers 179

+ +
−

− −
∫dt ∫dt

ê2g

ês

ê2g(0−)

1

R1C

1

R1C

Rinc

L

1

C

1

L

îL(0−)

îL

Figure 7.13(b). Simulation block diagram for the linearized system.

Substituting the expression for îL in Eq. (7.41) and using Rinc = de2g

diL

∣

∣

∣

i L

yields

−C
d2ê2g

dt2
−

1

R1

dê2g

dt
+

1

R1

dês

dt
= −

Rinc

L

(

−C
dê2g

dt
−

ê2g

R1
−

ês

R1

)

+
ê2g

L
.

Collecting terms, we have

C
d2ê2g

dt2
+

(

L+ R1 RincC

R1 L

)

dê2g

dt
+

(

Rinc + R1

R1 L

)

ê2g =
1

R1

dês

dt
+

Rinc

LR1
ês . (7.43)

(d) The simulation block diagram for the linearized system appears in Fig. 7.13(b).

7.5 OPERATIONAL AMPLIFIERS

An operational amplifier (op-amp) is an electrical amplifier with a very high voltage

gain, of the order of 106 V/V. It is constructed as an integrated circuit or an inter-

connection of many (30–40, or so) components, primarily transistors and resistors,

fabricated on a piece of silicon. Op-amps have found an enormous number of versa-

tile applications in engineering systems that perform processing of electrical signals.

There are hundreds of different types of op-amps on the market today, and most of

them can be purchased for less than a dollar. Although a complete discussion of the

topic is clearly beyond the scope of this text, this section briefly reviews the principles

of operation and several most common applications of op-amps that are likely to be

of interest to an engineer dealing with instrumentation, measurement, or control

system applications.4

The schematic circuit diagram of an op-amp is presented in Fig. 7.14. It shows

two inputs, a noninverting input (+) and an inverting input (−), and one output.

Figure 7.15 shows a top view of a typical op-amp package, such as the LM 741, which

has eight terminals distributed along two sides of the package.

Because of their very high gain, op-amps are almost never used to simply amplify

the voltage applied to the two input terminals shown in Fig. 7.14. In this configuration,

the output signal swings over its full range and into saturation (near supply voltage)

for difference in input signals of a very small magnitude, of the order of 10 �V. This

is illustrated in Fig. 7.16, which shows a typical input–output voltage characteristic of

4 For a more complete treatment of op-amps and their applications, see P. Horowitz and W. Hill, The

Art of Electronics, 2nd ed. (Cambridge University Press, Cambridge, 1999), pp. 175–261.

180 Electrical Systems

−

+

(2)

(3)

(6)

(g)

Output

inverting input

noninverting
input

Figure 7.14. Circuit diagram of an op-amp.

an op-amp. A linear range of the output voltage extends from 0 V to approximately 2

to 3 V below and above the supply voltage. If the supply voltage of ± 15 V is used, the

output voltage of an op-amp varies in a linear fashion over a range of approximately

−12 to +12 V. Within this range, the relationship between the output, eo = e6g , and

input voltage, e23, is linear, i.e.,

e6g = kae23, (7.44)

where ka is the gain of the amplifier. For ka equal to 106 V/V, the corresponding linear

range of the input voltage is approximately from −12 to +12 �V, which is far below

the magnitude of typical signals encountered in engineering systems.

Therefore, in almost all practical applications, op-amps are used in a negative-

feedback configuration, which not only lowers the voltage gain but also improves

considerably their other performance characteristics. Negative feedback is the main

topic of Chaps. 13 and 14, but for the purposes of the present discussion it will suffice

to say that it is a process whereby a signal related to the system output is transferred

back to the input of the system in such a way that it reduces the net input signal

applied to the system. As the output signal tends to increase, so does the reduction

of the input signal. As a result, an op-amp’s voltage gain is reduced to a level at

which it can operate effectively, without being driven into saturation when subjected

to typical signals encountered in engineering systems.

There are two overarching assumptions that are generally accepted in the analysis

of op-amps with negative feedback:

Assumption 1: Because the op-amp gain is so high, when the output voltage is

within its normal operating range, the voltage between the input terminals is so

small that it can be assumed to be zero.

Assumption 2: The current drawn by an op-amp input is zero because its input

resistance is very, very large.

8

7

6

5

1

2

3

4

-

+

offset null

inverting input

noninverting input

negative voltage
supply

no connection

positive voltage
supply

output

offset null

Figure 7.15. Top view of the op-amp package.

7.5. Operational Amplifiers 181

0

�15 V

�15 V

12�V

�12�V

e23

e6g

Figure 7.16. Output voltage versus input voltage
characteristic of an op-amp.

Several of the most common op-amp circuits are now analyzed based on these two

assumptions.

7.5.1 Inverting Amplifier

The inverting amplifier is shown in Fig. 7.17. In this configuration, the noninverting

input terminal of the op-amp is at ground and thus, from assumption 1, terminal 2 is

at ground also. In fact, terminal 2 is sometimes called a virtual ground. This implies

that the voltage across R1 is ei and the voltage across R2 is eo. From the Kirchhoff’s

current law equation at the inverting input,

i1 + i2 = iin. (7.45)

Because of assumption 2,

iin = 0. (7.46)

Hence, from Eq. (7.45),

i1 = −i2, (7.47)

or, equally,

ei

R1
= −

eo

R2
. (7.48)

The expression for the output voltage is

eo = −
R2

R1
ei . (7.49)

i1

i2

eo

R1

iinei

R2

(6)
(2)

(g)

−

+

Figure 7.17. Inverting amplifier.

182 Electrical Systems

Expressed verbally, the output voltage of the inverting amplifier is equal to the

inverted input voltage times the amplifier gain (R2/R1). One undesirable charac-

teristic of an inverting amplifier is that its input resistance, which is equal to R1, can

be relatively small, especially when high voltage gain is required. Therefore excessive

current may be drawn from whatever device is connected to R1.

7.5.2 Noninverting Amplifier

The diagram of a noninverting amplifier is shown in Fig. 7.18. From assumption 1,

e2g = e3g = ei . (7.50)

However, e2g, can also be determined from a voltage-divider formula:

e2g =
R1

R1 + R2
e6g. (7.51)

Recognizing that e6g is the same as the output voltage eo and using Eq. (7.50) gives

ei =
R1

R1 + R2
eo. (7.52)

Hence the output voltage of the noninverting amplifier is

eo =
(

1 +
R2

R1

)

ei . (7.53)

The noninverting amplifier has a huge input resistance of the order of 1012 � and a

very small output resistance of a fraction of an ohm.

7.5.3 Voltage Follower

A voltage follower is a noninverting amplifier with R1 infinite and R2 equal to zero.

The circuit diagram of a voltage follower is shown in Fig. 7.19. Because this is a special

case of a noninverting amplifier, Eq. (7.53) still applies but with the specified values

eo

R2

R1

−

+

(g)

(3)

(2)
(6)

ei

Figure 7.18. Noninverting amplifier.

7.5. Operational Amplifiers 183

−

+

(g)

ei

eo
(3)

(2)

(6)

Figure 7.19. Voltage follower.

of R1 and R2, the output voltage in this case is

eo = ei . (7.54)

Like the noninverting amplifier, the voltage follower has a very large input resistance

and a very small output resistance, which makes it an ideal unit to isolate two parts of

an electrical system. For this reason, the voltage follower is sometimes called a buffer.

7.5.4 Summing Amplifier

A summing amplifier is an inverting amplifier with multiple inputs. Figure 7.20 shows

a diagram of a summing amplifier with two inputs. Following the same steps as in Sub-

section 7.5.1, here we find that the Kirchhoff’s current law equation at terminal 2 is

i1 + i2 + i3 = iin. (7.55)

Using Ohm’s law for each current on the left-hand side and applying assumption 2

yields

ei1

R1
+

ei2

R2
+

eo

R3
= 0. (7.56)

If all resistors are selected the same, R1 = R2 = R3, the output voltage is an inverted

sum of the input voltages:

eo = −(ei1 + ei2). (7.57)

i3
R3

R1 i1
(2)

i2 (6)

(3)
ei1 eo

ei2 R2

(g)

−

+

Figure 7.20. Summing amplifier.

184 Electrical Systems

7.5.5 Differential Amplifier

The circuit diagram of a differential amplifier is shown in Fig. 7.21. From assumption

2, Kirchhoff’s current law equation at terminal 2 is

i1 + i2 = 0, (7.58)

where the two currents are

i1 =
ei1 − e2g

R1
, (7.59)

i2 =
eo − e2g

R2
. (7.60)

Substituting the expressions for currents into Eq. (7.58) and solving for e2g yields

e2g =
(

R2

R1 + R2

)

ei1 +
(

R1

R1 + R2

)

eo. (7.61)

When the voltage-divider expression is used, the voltage at terminal 3 is

e3g =
(

R2

R1 + R2

)

ei2. (7.62)

Based on assumption 1, the voltages defined by Eqs. (7.61) and (7.62) are the same,

e2g = e3g , which gives
(

R2

R1 + R2

)

ei1 +
(

R1

R1 + R2

)

eo =
(

R2

R1 + R2

)

ei2, (7.63)

and hence,

eo =
(

R2

R1

)

(ei2 − ei1). (7.64)

If both R1 and R2 are selected the same, the output voltage is equal to the difference

between the input voltages,

eo = ei2 − ei1. (7.65)

ei1

R1

R1

R2

R2

i1

i2

ei2
eo

(g)

(6)
(2)

(3)

−

+

Figure 7.21. Differential amplifier.

7.5. Operational Amplifiers 185

7.5.6 Active Filter

In the applications discussed so far, the only electrical components (other than op-

amps) used in the circuits were resistors. Because resistors are energy-dissipating ele-

ments and are not capable of storing energy, all the circuits act as static systems with

various static relationships between input and output voltage signals. By including

energy-storing elements, such as capacitors, in the op-amp circuits, dynamic systems

can be designed to perform a wide range of dynamic operations such as integration,

differentiation, or filtering with desired frequency characteristics. All those dynamic

op-amp circuits, generally referred to as active filters, find a great variety of applica-

tions in signal processing and in control systems. The analysis of the most common

active filters is performed in a manner similar to that used in Subsections 7.5.1–7.5.5,

and it is illustrated in the following example of an integrator.

EXAMPLE 7.4

Derive a mathematical expression for the output voltage in the circuit shown in Fig. 7.22.

The circuit shown in Fig. 7.22 is similar to the inverting amplifier circuit shown in

Fig. 7.17, except that in this active filter a capacitor is used instead of resistance R2 in

the feedback path. To follow the steps used in the analysis of an inverting amplifier in

Subsection 7.5.1, start with Kirchhoff’s current law equation at terminal 2,

iR = −iC, (7.66)

where the two currents can be expressed as

iR =
ei

R
, (7.67)

iC = C
deo

dt
. (7.68)

Substituting the expressions for currents into Eq. (7.66) gives

ei

R
= −C

deo

dt
, (7.69)

and hence the output voltage is

eo = −
1

RC

∫ t

0

ei dt + eo(0). (7.70)

R

C

−

+

(g)

iR

iC

(2)

(6)

ei

eo

Figure 7.22. Active filter considered in Example 7.4.

186 Electrical Systems

R
R1

R1

C

(g)

e i −

−

+

+ eo

Figure 7.23. Noninverting integrator.

Thus the output voltage is proportional to the integral of the input voltage with a gain of

−(1/RC). To change the gain to a positive number, so that the output signal is positive

when an integral of the input signal is positive, the output of this circuit can be connected

to an inverting amplifier with R1 = R2, which results in a voltage gain of −1. A complete

circuit diagram is shown in Fig. 7.23. With the initial condition set to zero, the output

voltage from this circuit is

eo =
1

RC

∫ t

0

ei dt . (7.71)

A simulation block diagram for this filter acting as a noninverting integrator is shown in

Fig. 7.24.

7.6 LINEAR TIME-VARYING ELECTRICAL ELEMENTS

Many of the instrument and control systems used in engineering use electrical ele-

ments that are time varying. The most common is the variable resistor, in which the

resistance is caused to vary with time.

The elemental equation of this time-varying resistor is

eR = e1g − e2g = e12 = R(t)iR. (7.72)

If such a resistor is supplied with a constant current, its voltage drop will have a

variation with time that is proportional to the variation in R. Conversely, if the

resistor is supplied with a constant voltage drop, it will have a current that varies

inversely with the varying of R.

The capacitor may also be a time-varying element, having the time-varying ele-

mental equations

qc = C(t)eC, (7.73)

and, because iC = dqC/dt ,

iC = C(t)
deC

dt
+ eC

dC

dt
. (7.74)

RC

1
dt −1 eoei − ∫

Figure 7.24. Simulation block diagram for noninverting integrator.

7.6. Linear Time-Varying Electrical Elements 187

Similarly, the elemental equations for a time-varying inductor are

� = L(t)iL,

or

eL =
d�

dt
, (7.75)

and, because eL = d�/dt ,

eL = L(t)
diL

dt
+ iL

dL

dt
. (7.76)

In general, the state variable for a time-varying capacitor is its charge qC, and

the state variable for a time-varying inductor is its flux linkage �.

EXAMPLE 7.5

A time-varying inductor in series with a voltage source and a fixed resistor is being

used as part of a moving-metal detector. The circuit diagram for this system is shown in

Fig. 7.25. Derive the state-variable equations for the circuit.

SOLUTION

Use Kirchhoff’s voltage law to write

es = eL + RiL. (7.77)

Substituting from Eq. (7.76) for eL in Eq. (7.77) gives

es = L(t)
diL

dt
+ iL

dL

dt
+ RiL. (7.78)

If iL is selected as the state variable, the state-variable equation takes the following form:

diL

dt
= −

1

L(t)

(

R +
dL

dt

)

iL +
1

L(t)
es . (7.79)

This equation would be very difficult to solve because of the presence of the derivative

of inductance. The state model of the circuit can be greatly simplified if a flux linkage �

is used as the state variable instead of current iL. Substituting from Eq. (7.75) for eL and

iL yields

es =
d�

dt
+

R

L(t)
�. (7.80)

L(t)

R eo

+
+

(g)

(2)

(1)

iL

es = constant Figure 7.25. Time-varying inductor and resistor circuit.

188 Electrical Systems

Hence the state-variable equation in a standard form is

d�

dt
= −

R

L(t)
� + es . (7.81)

The output equation relating eo to the state variable � is

eo =
R

L(t)
�. (7.82)

This example clearly demonstrates the benefits of selecting flux linkage as the state vari-

able in circuits involving time-varying inductors.

7.7 SYNOPSIS

The basic physical characteristics of the linear, lumped-parameter electrical elements

were discussed together with their mechanical system analogs: type A, electrical

capacitor and mechanical mass; type T, electrical inductor and mechanical spring;

type D, electrical resistor and mechanical damper. Thus capacitance C is analogous

to mass m, inductance L is analogous to inverse stiffness 1/k, and resistance R is anal-

ogous to inverse damping 1/b. Diagrams and describing equations were presented for

the two-terminal elements, including ideal voltage and ideal current sources. Kirch-

hoff’s voltage and current laws were provided to serve as a means of describing the

interactions occurring between the two-terminal elements in a system of intercon-

nected elements (i.e., electrical circuits).

The dynamic analysis of electric circuits was then illustrated by means of several

examples chosen to demonstrate different approaches to finding the input–output

differential equation for a given circuit. In each case the procedure began with writing

the elemental equations for all of the system elements and writing the required

interconnection (Kirchhoff’s law) equations to form a necessary and sufficient set

of n equations relating n unknown variables to the system input(s) and time. Then,

to eliminate the unwanted unknown variables, one of four different methods was

used in each example: (a) step-by-step manipulation of the n equations to reduce the

number of unwanted variables and reduce the number of equations one or two at

a time; (b) the node method, which eliminates many or all of the unwanted T-type

variables (currents) in a few steps; (c) the loop method, which eliminates many or

all of the unwanted A-type variables (voltages) in a few steps; or (d) developing

the set of state-variable equations based on each of the energy-storage elements,

which eliminates all unwanted variables except the state variables, so that only the

voltages across capacitors and the currents through inductors remain as unknowns. In

cases (b), (c), and (d), the elimination of the remaining unwanted variables involves

the algebraic manipulation of a reduced set of only m equations containing only m

unknowns to arrive at the desired input–output differential equation containing the

one remaining unknown and its derivatives on the left-hand side. For the case in

which the system is to be simulated by computer, method (d) is preferred because

it leads directly to the equations in proper form for programming on the computer,

and the final reduction to one variable is needed only for the purposes of producing

a check solution when needed. Note that a properly constituted set of state-variable

Problems 7.1–7.3 189

equations must not have any derivative terms on the right-hand sides of any of its

equations.

Analyses of electrical systems were carried out, including a circuit with a nonlin-

ear resistor. The small-perturbations technique was used to derive a linearized model

of the nonlinear circuit. In deriving state models for circuits containing time-varying

capacitors and inductors, charge and flux linkage should be used as the state variables

to avoid problems with the presence of derivatives of capacitance or inductance in

the state variable equations.

Operational amplifiers were introduced with a brief discussion of their general

performance characteristics. The discussion was illustrated with examples of several

most commonly used op-amp circuits.

PROBLEMS

7.1 The source in the circuit shown in Fig. P7.1 undergoes a step change so that es suddenly

changes from 0 to 10 V at t = 0. Before the step change occurs, all variables are constant,

i.e., es has been zero for a long time.

(a) Find e32(0−) and e32(0+).

(b) Find e1g(0−) and e1g(0+).

L

C R2

+

− (g)

(2)(3) (1)R1

es(t) Figure P7.1.

7.2 The circuit shown in Fig. P7.2 is subjected to a step change in es from 5.0 to 7.0 V at

t = 0. Before the step change occurs, all variables are constant, i.e., es has been 5.0 V for

a very long time.

(a) Find iL(0−), iL(0+), and iL(∞).

(b) Find e3g(0−), e3g(0+), and e3g(∞).

(c) Find e2g(0−), e2g(0+), and e2g(∞).

L

R2 eo

R1

C

L = 0.3 h

R1 = 1000 Ω
R2 = 5000 Ω
C = 1.5 µF

(1.5 × 10−6 F)
(g)

(3)(2)(1)

+

−

+

−

es(t) Figure P7.2.

7.3 You have been asked if you can determine the capacitance of an unknown capacitor

handed to you by a colleague. This capacitor is not an electrolytic device, so you do not

have to worry about its polarity. Not having a capacitance meter, you decide to use a

190 Electrical Systems

battery that is close at hand, together with a decade resistor box, to run a simple test that

will enable you to determine the capacitance. After the capacitor has been charged to

12.5 V from the battery and then disconnected from the battery, a high value of resistance,

100,000�, is connected across the terminals of the capacitor, resulting in its slow discharge.

The values of its voltage at successive intervals of time are recorded below.

Time, s Capacitor voltage, e1g,V

0 12.5

10 9.3

20 7.1

30 5.3

40 3.9

50 2.9

60 2.2

(a) Write the system differential equation for the capacitor voltage elg during the dis-

charge interval: What is the input to this system? (Hint: What happens at t = 0?)

(b) Determine your estimated value for the capacitance C.

7.4 This is a continuation of Problem 7.3. You have rearranged the components R and C

as shown in Fig. P7.4 and run another test by suddenly closing the switch and recording the

capacitor voltage at successive increments of time. The results appear in the accompanying

table.

Time, s e1g,V

0 2.2

10 4.3

20 5.9

30 7.2

40 8.3

50 9.1

60 9.6

C

+

− (g)

(2)Switch

Battery

(3)
(1)

Rbat

es = 12.5 V

R = 100,000

 ohms

Figure P7.4.

Use the value of capacitance found in Problem 7.3(b) to determine an estimated value

for the internal resistance of the battery, Rbat.

7.5 (a) Develop the system differential equation relating the output voltage e3g to the

input voltage es = e2g for the circuit shown in Fig. P7.5. (Use only the symbols in the

figure.)

(b) The input voltage, which has been zero for a very long time, is suddenly increased to

5.0 V at t = 0. Find e3g(0−), e3g(0+), and e3g(∞).

(c) Find the system time constant, and sketch the response of e3g versus time t.

Problems 7.5–7.7 191

R1 = R

R2 = R R = 200 Ω
L = 10 h

L

(g)

+

−

es(t)

(2) (3)

Figure P7.5.

7.6 An electric circuit is being driven with a voltage source es as shown in Fig. P7.6, and

the output of primary interest is the capacitor voltage eo = e3g .

(a) Derive the system differential equation relating eo to es.

(b) Find the undamped natural frequency and damping ratio for this system.

(c) Find iL(0+), eo(0+), and deo /dt at t = 0+, assuming that es has been equal to zero for

a very long time and then suddenly changes to 10 V at t = 0.

(d) Sketch the response of eo versus time, indicating clearly the period of oscillation (if

applicable) and the final steady-state value of eo.

eo = e3g

R1 L

R2 C

R1 = 2000 Ω
R2 = 8000 Ω
L = 27.6 h

C = 4.5 µF(g)

(3)(2)(1)

+

−

+

−

es(t)

Figure P7.6.

7.7 (a) Develop a complete set of state-variable equations for the circuit shown in Fig.

P7.7, using e3g and iL as the state variables.

(b) Draw the simulation block diagram for this system, using a separate block for each

independent parameter and showing all system variables.

(c) Consider e3g to be the output variable of primary interest and develop the input–

output system differential equation for this system.

(d) Having been equal to 5 V for a very long time, es is suddenly decreased to 2 V at time

t = 0. Find iL(0+), iC(0+), e3g(0+), and de3g/dt at t = 0+.

(e) Sketch the response of e3g versus time, given the following system parameters:

R1 = 80 �, R2 = 320 �, L = 2 h, C = 50 �F, R3 = 5 �.

R1 R2

R3

i1

(g)

(1) (2)

(3)

(5)C

L

+

−

es(t) iL Figure P7.7.

192 Electrical Systems

7.8 You have been given a field-controlled dc motor for use in a research project, but the

values of the field resistance and field inductance are unknown. By conducting a simple

test of the field with an initially charged capacitor of known capacitance, you should find

it possible to estimate the values of Rf and Lf for this motor winding. The schematic

diagram in Fig. P7.8 shows such a test arrangement, the test being initiated by closing the

switch at t = 0.

(a) Assuming a series R–L model for the field winding, draw the lumped-parameter

circuit diagram for this system. (Why would a parallel R–L model for the field winding

not be correct?)

(b) Derive the system differential equation for the voltage e21 after the switch is suddenly

closed. (Note that the input for this system is a sudden change in the system at t = 0;

after t = 0, this is a homogeneous system with no input variable.)

(c) After the switch is closed, the voltage e21 is displayed versus time on an oscillo-

scope. A damped oscillation, having a period of 0.18 s and a DR of 0.8 per cycle, is

observed. Determine estimated values of Rf and Lf, based on your knowledge about

the response of second-order systems.

Switch

(2)

Armature

terminals

Direct

current

motor

(1)

Precharged

capacitor
Field

terminals
C = 100 µF

Figure P7.8.

7.9 The nonlinear circuit shown in Fig. P7.9 is to be subjected to an input voltage consist-

ing of a constant normal operating value es and an incremental portion ês , which changes

with time.

The system parameters are R1 = 400 �, L = 3.0 h, C = 5 �F, and, for the NLR, e23 =
3.0 × 106(iNLR)3. The normal operating value of the source voltage es(t) is 5.0 V.

(a) Find the normal operating-point value of the output voltage e2g and the incremental

resistance R′
inc of the NLR.

(b) Develop the nonlinear state-variable equations for the circuit, using e12 and iNLR

as the state variables, and linearize them for small perturbations from the normal

operating point.

(c) Find the natural frequency �n and the damping ratio � of the linearized system, and

carry out the analytical solution for e2g when es suddenly increases by 0.5 V at t = 0.

Sketch e2g(t).

7.10 The nonlinear electric circuit shown in Fig. P7.10 is subjected to a time-varying

current source is, and its output is the voltage e2g. The nonlinear resistor obeys the relation

e23 = 1.0 × 107(iNLR)3.

(a) Write the set of nonlinear state-variable equations using iNLR and e2g as the state

variables.

Problems 7.10–7.11 193

+

−

es(t)

(1) (2)

(3)

(g)

NLR
iNLR

R1

L

C

Figure P7.9.

(b) Given the following normal operating-point data, find the values of the resistance Rl

and the normal operating current iNLR:

e12 = 1.2V e23 = 3.75 V.

(c) Develop the set of linearized state-variable equations for this system.

(d) Draw the simulation block diagram for this linearized system, using a separate block

for each system parameter and showing all system variables.

(1) (2)

(3)

(g)

NLR
iNLR

L

C

R1

is(t) Figure P7.10.

7.11 The nonlinear electric circuit shown in Fig. P7.11 is subjected to an input voltage es,

which consists of a constant normal operating component es = 5.0 V and a time-varying

component ês(t). The NLR is a square-law device such that e23 = K|iNLR|iNLR.

(a) Develop the nonlinear state-variable equations for the circuit using e3g and iL as the

state variables and using symbols for the system parameters.

(b) Determine the incremental resistance Rinc = (de23|diNLR)|iNLR (i.e., the linearized

resistance) for the NLR. Use symbols only.

(c) Write the linearized state-variable equations for the system, using symbols only.

(d) Draw the simulation block diagram for the linearized system, using a separate block

for each parameter and showing all system variables.

(e) Derive the input–output system differential equation for the linearized system, with

eo = e3g as the output.

194 Electrical Systems

L

R

NLR

eo

iL

C

(g)

(3)(2)(1)

+

−

+

−

es(t)
Figure P7.11.

7.12 In the variable-reactance transducer circuit shown in Fig. P7.12, the air gap varies

with time, producing a corresponding variation of inductance with time given by

L(t) = 1.0 + 0.1 sin 5t.

The input voltage es = 6.0 V is constant, and the output signal is e2g = e2g + ê2g(t). The

values of the resistances are R1 = 1.2 × 103 � and R2 = 2.4 × 103 �.

(a) Derive the state-variable equation for this circuit using magnetic flux linkage � as

the state variable.

(b) Determine the normal operating conditions (i.e., the values of e2g and i L) for this

system and linearize the state-variable equation for small perturbations about the

normal operating point.

(c) Write the differential equation relating ê2g to L(t).

iL

L(t) e2g = dλ/dt

(2)

Air gap

(g)

(1)

es = constant

+

−

es

R1

R2

Figure P7.12.

7.13 In the circuit shown in Fig. P7.13, the value of the capacitance varies with time about

its mean value C and the voltage source es is constant. In other words,

C = C + Ĉ(t).

(a) Develop the state-variable equation for this system, using charge qC on the capacitor

as the state variable.

(b) Linearize this state-variable equation for small perturbations about the normal oper-

ating point.

(c) Write the linearized system differential equation relating ê2g to Ĉ(t).

(2)

(g)

(1)

+

−

iC = dqC /dt

C(t)es

es = constant

R1

R2

Figure P7.13.

Problems 7.14–7.16 195

R1

R2L

−

+
ei

eo

(6)

(3)

(2)

Figure P7.14.

7.14 The circuit shown in Fig. P7.14 is often used to obtain desired dynamic characteristics

for use in automatic control systems. Make the commonly accepted assumptions about

op-amps (as discussed in Section 7.5) and derive the input–output equation for the system.

7.15 The circuit shown in Fig. P7.15 is a second-order low-pass Butterworth filter used

widely in data acquisition systems to filter out high-frequency noise signals that contam-

inate the measuring signal.

R1
R

3

C

−

+

−

+

1 C2

R2 R4

eo

ei

Figure P7.15. Second-order Butterworth filter.

Make the necessary simplifying assumptions and derive the state-variable equations

for the filter. Obtain the input–output equation relating output voltage eo to input voltage

ei. Assuming that the system is overdamped, find the expressions for the time constants

and for the steady-state gain of the system.

7.16 A thermistor is a semiconducting temperature sensor whose operation is based on

the temperature-dependent electrical resistance. A typical characteristic of the thermistor

relating output voltage Vt to temperature T is shown in Fig. P7.16(a).

This form of the characteristic, which represents the sensor’s calibration curve, is

very inconvenient for signal recording and processing purposes. The desirable form of

the calibration curve is shown in Fig. P7.16(b).

196 Electrical Systems

Vt [V]

1.2

0.4

0 100 T [oC]

Figure P7.16(a). Characteristic of a thermistor sensor.

Vd [V]
10.0

0 100 T [oC]

Figure P7.16(b). Desired calibration characteristic of
thermistor sensor.

The thermistor actual calibration curve shown in Fig. P7.16(a) can be modified to the

desired form, shown in Fig. P7.16(b), by means of a simple op-amp circuit shown in Fig.

P7.16(c).

R2

R1

o −
Vi

+
o

+
Vref

−

_

V

Figure P7.16(c). Op-amp thermistor cali-
bration circuit.

(a) Write the expression for the output voltage Vo in terms of inputs Vi and Vref. Note that

the circuit is a combination of an inverting amplifier (Vo versus Vi) and a noninverting

amplifier (Vo versus Vref).

(b) Write the mathematical equation for the actual calibration curve shown in Fig. 3(a).

(c) Write the mathematical equation for the desired calibration curve shown in Fig. 3(b).

(d) Assuming R1 = 1 k�, find the values of R2 and Vref in the op-amp circuit to modify

the original calibration curve of the thermistor into the desired form.

7.17 The coil in the magnetic levitation apparatus described in Problem 2.15 is driven

by the electric circuit shown in Fig. P7.17. Including the dynamics of the ball as derived

Problem 7.17 197

in that problem, add the appropriate state equation(s) to include the electrical dynamics

introduced by this circuit. The additional parameter values are as follows:

R1 10 �

Rs 1 �

L 0.4124 H

R1

L

Rs

ein

Figure P7.17. Schematic of circuit model-
ing the magnetic levitation coil.

(a) Do you think the additional dynamics introduced by the circuit make significant

impact on the overall system dynamics? Explain and justify your answer.

(b) The second resistor in the circuit is an actual discrete resistor, specifically included by

the engineers who designed this apparatus, and they specified that it be 1.000 � to a

very high degree of accuracy. Can you say why this has been included in the system?

(Hint: In designing a workable control system for the apparatus, it is necessary that

the instantaneous current in the coil be measured.)

8

Thermal Systems

LEARNING OBJECTIVES FOR THIS CHAPTER

8–1 To recognize the A- and D-type elements of thermal systems.

8–2 To identify and model the three fundamental modes of heat transfer.

8–3 To use the energy-balance method to develop models of lumped-parameter

thermal systems.

8.1 INTRODUCTION

Fundamentals of mathematical methods used today to model thermal systems were

developed centuries ago by such great mathematicians and scientists as Laplace,

Fourier, Poisson, and Stefan. The analytical solution of the equations describing

the basic mechanisms of heat transfer – conduction, convection, and radiation– was

always considered to be an extremely challenging mathematical problem. The study

of energy transfer in thermal systems continues to be an important topic in engineer-

ing because it forms the basis of analysis of energy efficiency for indoor environmental

controls, industrial processes, and all forms of energy transformation.

As described in Chap. 1, temperature is an A-type variable, determining the

amount of energy stored in a thermal capacitance, the A-type energy-storing element

corresponding to a mass in mechanical systems or a capacitor in electrical systems.

All matter has thermal capacitance (which is proportional to mass), and energy is

stored as internal energy because of its temperature. The T-type variable in thermal

systems is heat flow rate Qh; however, as was pointed out in Section 1.2, there is no

T-type element in thermal systems that would be capable of storing energy as a result

of heat flow rate. The D-type element in thermal systems is the thermal resistor and

will be defined as the resistance to heat transfer.

Temperature is usually dependent on spatial as well as temporal coordinates. As

a result, the dynamics of thermal systems has to be described by partial differential

equations. Moreover, radiation and convection are by their very nature nonlinear,

further complicating the solutions. Few problems of practical interest described by

nonlinear partial differential equations have been solved analytically, and the numer-

ical solution usually requires an extensive study to be carried out with sophisticated

finite-element and computational fluid dynamics software.

In this chapter, methods are presented to model the dynamic behavior of thermal

systems that can be seen as lumped-parameter systems. In addition, techniques to

198

8.2. Basic Mechanisms of Heat Transfer 199

approximate spatial variations of temperature by use of lumped approximations are

also presented. First, the equations describing the basic mechanisms of heat transfer

by conduction, convection, and radiation are reviewed in Section 8.2. In Section 8.3,

lumped models of thermal systems are introduced. Application of the lumped models

leads to approximate solutions, and great care must be exercised in interpreting the

results produced by this method. In many cases, however, especially in the early stages

of system analysis, the lumped models are very useful because of their simplicity and

easy solution methods.

8.2 BASIC MECHANISMS OF HEAT TRANSFER

In this section the classical mathematical equations describing heat transfer by con-

duction, convection, and radiation are reviewed. This part of the material is presented

in a rather condensed form because it is assumed that the reader is generally familiar

with it.

8.2.1 Conduction

The net rate of heat transfer by conduction across the boundaries of a unit volume is

equal to the rate of heat accumulation within the unit volume, which is mathematically

expressed by the Laplace equation

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
=

1

�

∂T

∂t
, (8.1)

where T is temperature, � is thermal diffusivity, and x, y, and z are the Cartesian

space coordinates. The thermal diffusivity can be expressed as � = k/�cp, where k is

thermal conductivity, � is density, and cp is the specific heat of the material.

At steady state – that is, when temperature remains constant in time – the Laplace

equation takes the form

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0. (8.2)

For one-dimensional heat conduction in the x direction, the rate of heat flow is

determined by the Fourier equation

Qhk = −kA
dT

dx
, (8.3)

where A is an area of heat transfer normal to x. Integrating with respect to x yields
∫ L

0

Qhkdx = −
∫ T2

T1

kAdT, (8.4)

and hence the rate of heat transfer is

Qhk = −
(

A

L

) ∫ T2

T1

kdT. (8.5)

The one-dimensional steady-state heat conduction is depicted in Fig. 8.1. Note that

the assumption of the temperature gradients in the y and z directions being equal to

200 Thermal Systems

Qhk Qhk

T1

k, A

T2

0 L
x

Figure 8.1. One-dimensional steady-state heat conduc-
tion.

zero implies that there is no heat loss through the sides, which are said to be perfectly

insulated. At steady state, the temperature is constant in time and thus there is no

energy storage.

If the thermal conductivity of the material does not depend on temperature, the

rate of heat transfer can be expressed as

Qhk =
(

kA

L

)

(T1 − T2) . (8.6)

In Eq. (8.6), T1 is the temperature at x = 0 and T2 is the temperature at x = L. In

general, if the value of the rate of heat transfer Qhk is known, the value of temperature

at any location between 0 and L, 0 < x < L, can be calculated, substituting T(x) for

T2 in Eq. (8.6):

T(x) = T1 −
(x

Ak

)

Qhk. (8.7)

Note that Qhk is positive if heat is transferred in the direction of x and negative if

heat is flowing in the direction opposite to x.

8.2.2 Convection

Convective heat transfer is usually associated with the transfer of mass in a boundary

layer of a fluid over a fixed wall. In the system shown in Fig. 8.2, the rate of heat transfer

by convection Qhc between a solid wall and a fluid flowing over it is given by

Qhc = hc A(Tw − Tf), (8.8)

where hc is a convective heat transfer coefficient, A is an area of heat transfer, and

Tw and Tf represent wall and fluid temperatures, respectively.

From the distribution of the fluid velocity within the boundary layer shown

in Fig. 8.2, it can be seen that the velocity is zero on the surface of the wall and

thus no convective heat transfer can take place there. However, although heat is

transferred across the wall–fluid boundary by conduction, it is carried away from

there by convection with the flowing fluid. The rate at which the fluid carries heat

from the wall surface is thus determined by the heat convection equation [Eq. (8.8)].

If the flow of fluid is caused by its density gradient in the gravity field, the heat convec-

tion is said to be free. The density gradient usually occurs as a result of temperature

gradient. Forced convection, on the other hand, takes place when the flow of fluid is

forced by an external energy source, such as a pump or a blower.

8.2. Basic Mechanisms of Heat Transfer 201

Fluid
flow

Velocity

Tw

Tf •

Qhc

Boundary
layer

Figure 8.2. Convective heal transfer between a
fluid and a wall.

Determination of the value of the convective heat transfer coefficient for an

actual thermal system presents a challenging task. In many practical cases, empirical

models are developed that express a convective heat transfer coefficient as a function

of other system variables for specified operating conditions. The applicability of such

empirical formulas is usually limited to a narrow class of problems. Moreover, the

mathematical forms used in convective heat transfer correlations are often nonlin-

ear, which leads to nonlinear system-model equations, which are difficult to solve

analytically.

8.2.3 Radiation

The rate of heat transfer by radiation between two separated bodies having temper-

atures T1 and T2 is determined by the Stefan–Boltzmann law,

Qhr = �FEFAA(T4
1 − T4

2), (8.9)

where � = 5.667 × 10−8 W/m2 K4 (the Stefan–Boltzmann constant), FE is effective

emissivity, FA is the shape factor, and A is the heat transfer area.

The effective emissivity FE accounts for the deviation of the radiating systems

from blackbodies. For instance, the effective emissivity of parallel planes having

emissivities �1 and �2 is

FE =
1

1

�1
+

1

�2
− 1

. (8.10)

The values of the shape factor FA range from 0 to 1 and represent the fraction

of the radiative energy emitted by one body that reaches the other body. In a case

in which all radiation emitted by one body reaches the other body – for example, in

heat transfer by radiation between two parallel plane surfaces – the shape factor is

equal to 1.

The nonlinearity of Eq. (8.9) constitutes a major difficulty in developing and

solving mathematical model equations for thermal systems in which radiative heat

transfer takes place. Determining values of model parameters also presents a chal-

lenging task, especially when radiation of gases is involved.

202 Thermal Systems

8.3 LUMPED MODELS OF THERMAL SYSTEMS

Mathematical models of thermal systems are usually derived from the basic energy-

balance equations that follow the general form

⎛

⎝

rate of energy

stored

within system

⎞

⎠ =

⎛

⎝

heat flow

rate

into system

⎞

⎠ −

⎛

⎝

heat flow

rate

out of system

⎞

⎠

+

⎛

⎝

rate of heat

generated

within system

⎞

⎠ +

⎛

⎝

rate of work

done

on system

⎞

⎠ . (8.11)

For a stationary system composed of a material of density � , specific heat cp, and

constant volume V , the energy-balance equation takes the form

�cpV
dT

dt
= Qhin(t) − Qhout(t) + Qhgen +

dW

dt
. (8.12)

Equation (8.12) can be used only if the temperature distribution in the system,

or in a part of the system, is uniform – that is, when the temperature is independent

of spatial coordinates, T(x, y, z, t) = T(t). The assumption about the uniformity of

the temperature distribution also implies that the system physical properties, such as

density and specific heat, are constant within the system boundaries.

Two basic parameters used in lumped models of thermal systems are thermal

capacitance and thermal resistance.

The thermal capacitance of a thermal system of density � , specific heat cp, and

volume V is

Ch = �cpV. (8.13)

The rate of energy storage in a system of thermal capacitance Ch is

Qhstored = Ch

dT

dt
. (8.14)

Note that a thermal capacitance is an A-type element because its stored energy is

associated with an A-type variable, T. Physically, thermal capacitance represents a

systems ability to store thermal energy. It also provides a measure of the effect of

energy storage on the system temperature. If the system thermal capacitance is large,

the rate of temperature change owing to heat influx is relatively low. On the other

hand, when the system thermal capacitance is small, the temperature increases more

rapidly with the amount of energy stored in the system. For example, if the rate of

thermal energy storage changes by �Qh in a stepwise manner, the change in rate of

change of temperature is, from Eq. (8.14),

dT

dt
=

�Qh

Ch

. (8.15)

8.3. Lumped Models of Thermal Systems 203

Another parameter used in lumped models of thermal systems is thermal resistance

Rh. Thermal resistance to heat flow rate Qh between two points having different

temperatures, T1 and T2, is

R h =
T1 − T2

Qh

. (8.16)

The mathematical expressions for thermal resistance are different for the three

different mechanisms of heat transfer – conduction, convection, and radiation. The

conductive thermal resistance Rhk can be obtained from Eqs. (8.6) and (8.16):

Rhk =
L

kA
. (8.17)

From Eqs. (8.8) and (8.16), the convective thermal resistance is found to be

Rhc =
1

hc A
. (8.18)

The ratio of the conductive thermal resistance to the convective thermal resistance

yields a dimensionless constant known as the Biot number1 Bi:

Bi =
Rhk

Rhc

. (8.19)

Using Eqs. (8.17) and (8.18), one can express the Biot number as

Bi =
hc L

k
. (8.20)

The value of the Biot number provides a measure of adequacy of lumped mod-

els to represent the dynamics of thermal systems. At the beginning of this section,

lumped models were characterized as having a uniform temperature distribution,

which occurs when an input heat flow (usually convective) encounters relatively low

resistance within the system boundaries. The resistance to heat flow within the sys-

tem is usually conductive in nature. Thermal systems represented by lumped models

should therefore have relatively high thermal conductivities. It can thus be deduced

that lumped models can be used when the ratio of convective thermal resistance

to conductive thermal resistance is large or, equally, when the Biot number, which

represents the reciprocal of that ratio, is small enough. The value of 0.1 is usually

accepted as the threshold for the Biot number below which lumped models can be

used to describe actual thermal systems with sufficient accuracy. If Bi > 0.1, dis-

tributed models involving partial differential equations are necessary for adequate

representation of system dynamics.

To derive an expression for a radiative thermal resistance, the basic equation

[Eq. (8.9)], describing heat transfer by radiation, has to be linearized. Applying the

general linearization procedure based on Taylor series expansion to the function of

two variables fNL(T1, T2) yields

fNL(T1, T2) ≈ fNL(T1, T2) + T̂1
∂ fNL

∂T1

∣

∣

∣

∣

T1, T2

+ T̂2
∂ fNL

∂T2

∣

∣

∣

∣

T1, T2

, (8.21)

1 J. P. Holman, Heat Transfer, 9th ed. (McGraw-Hill, New York, 2002), pp. 133–5.

204 Thermal Systems

where T1 and T2 represent the normal operating point. The linearized expression

for radiative heat transfer is then

Qhr ≈ Qhr + b1T̂1 − b2T̂2, (8.22)

where

Qhr = �FEFAA
(

T
4

1 − T
4

2

)

,

b1 = 4�FEFAAT
3

1,

b2 = 4�FEFAAT
3

2.

The form of expression (8.22) is not very convenient in modeling thermal systems

because of its incompatibility with corresponding equations describing heat transfer

by convection and conduction in lumped models. To achieve this compatibility, a

different linearization procedure can be used. First, rewrite Eq. (8.9) in the following

form:

Qhr = �FEFAA
(

T2
1 + T2

2

)

(T1 + T2)(T1 − T2) (8.23)

Assuming that T1 and T2 in the first two parenthetical factors in Eq. (8.23) represent

normal operating-point values, the linear approximation is

Q̂hr ≈

(

1

Rhr

)

[

T̂1(t) − T̂2(t)
]

, (8.24)

where the radiative thermal resistance is

Rhr =
1

�FEFAA
(

T
2

1 + T
2

2

)

(

T1 + T2

)

. (8.25)

A lumped linear model of combined heat transfer by convection and radiation in

parallel can be approximated by

Q̂h =

(

1

Rhc

+
1

Rhr

)

(

T̂1 − T̂2

)

. (8.26)

The lumped-model parameters, thermal capacitance and thermal resistance, will now

be used in specific examples.

EXAMPLE 8.1

As advances in microelectronic circuits have allowed continual miniaturization of digital

circuits, the issue of cooling has become more important. If you open the PC on your

desktop, you will find that the central processing unit (CPU) has a large black metal

piece attached to it. This piece, the heatsink, is designed to conduct heat away from the

processor (where high temperatures would lead to failure) and transfer that heat, by way

of convection, to the air being circulated by one or more fans in the case of the computer.

A significant portion of failures in electronic components are linked to failure in the

system designed to cool the components.

In this example, a single vertical pin from one of these heatsinks is modeled and the

equations that describe its dynamic behavior are solved in a Simulink model. Figure 8.3

shows the geometry of the pin, which is made of pure aluminum.

8.3. Lumped Models of Thermal Systems 205

0.01 m

0.002 m

Tpin

Tbase

Ta

Figure 8.3. Model of one pin in an electronic heatsink in Example
8.1.

The pin is initially at ambient temperature (25 ◦C). At time t = 0, the base is subjected

to a temperature of 100 ◦C. Find the response of the temperature of the pin and the

temperature profile along the length of the pin as it changes over time.

SOLUTION

The first step of the solution is to use the Biot number to see if the pin can be modeled

as a single lump or if the problem must be broken down into many smaller elements.

Equation 8.20 defines the Biot number, where L is the characteristic length for the prob-

lem, k is the thermal conductivity of aluminum, and hc is the convective heat transfer

coefficient for this problem.

The characteristic length is that dimension along which one is likely to see vari-

ations in temperature. In this case, the length (0.01 m), rather than the diameter, is

the proper dimension to use. Thermal properties of aluminum are easily found in

handbooks and are summarized in Table 8.1. As discussed in Subsection 8.2.2, the

determination of convective heat transfer coefficients can be a very difficult task;

however, for simple geometries, heat transfer textbooks provide reasonable ranges

for these coefficients. For this geometry, it was decided that a value of 20 W/m2 ◦C

was a reasonable estimate.

Therefore the Biot number is

Bi =
hc L

k
=

(20)(0.01)

220
= 0.001,

which would indicate that a lumped model for the entire pin is adequate. The essential

assumption to move forward from this point is that the entire pin is at a uniform

temperature throughout the analysis. If part of the information you hoped to extract

from this analysis is the temperature distribution along the pin, then the problem

will still have to be broken down to smaller elements.

Table 8.1. Thermal properties of pure aluminum

Property Value Units

Density 2707 kg/m3

Thermal conductivity 220 W/m ◦C
Specific heat (cp) 896 J/kg ◦C

206 Thermal Systems

Beginning with a simple single-lump model, we note the following energy

balance:
(

rate of heat stored

in the pin

)

=
(

rate of heat

conducted through base

)

−
(

rate of heat

convected to air

)

,

(8.27)

from which the single differential equation can be written:

Ch

dTpin

dt
=

1

Rhk

(

Tbase − Tpin

)

−
1

Rhc

(

Tpin − Ta

)

, (8.28)

where

Ch = �cpV = (2707)(896)(3.14 × 10−8) = 0.0762 J/◦C,

Rhk =
L

kAk

=
0.005

(220)(3.14 × 10−6)
= 7.23 ◦C/W,

Rhc =
1

hc Ac

=
1

(20)(6.28 × 10−5)
= 796 ◦C/W.

Note that the length used in the conductive term represents the length from the base

of the pin to its center whereas the area Ak is the circular (cross-section) area of the

base of the pin through which the conduction takes place. On the other hand, the

area used to compute the convective resistance, Ac, is the surface area of the pin

exposed to the air.

Substituting the numerical values and putting the equation in standard form

leads to the following equation:

dTpin

dt
+ 1.83Tpin = 1.81Tbase + 0.017Ta . (8.29)

Following the techniques discussed in Chap. 4, one can find the solution of this

differential equation:

Tpin(t) = 100 − 75e−1.83t . (8.30)

Figure 8.4 shows the response of the temperature of the pin for 3 s following a sudden

change in the base temperature.

0 0.5 1 1.5 2 2.5 3
20

30

40

50

60

70

80

90

100

T
e
m

p
e

ra
tu

re
 (

°C
)

Time (s)

Figure 8.4. Response of pin temperature to
sudden change in base temperature by use
of a one-lump model.

8.3. Lumped Models of Thermal Systems 207

0.002 m

0.002 m

T5

T1

T2

T3

T4

Tbase

Ta

Figure 8.5. Pin model using five equal-sized lumps.

Although the low value of the Biot number indicates that the time response

computed with a single lumped model is relatively accurate and that the entire pin

will be approximately at the same temperature, some temperature variation along

the length of the pin will no doubt exist. If this variation is of interest (and it often is

for heat transfer analysis), a more detailed approach is called for.

When the pin is divided into five equal segments along its length, the result is a

stack of cylinders, as seen in Fig. 8.5.

Figure 8.6 shows a sketch of one of the pin elements, indicating the paths through

which thermal energy is transmitted. As shown in the one-lump model, an energy bal-

ance for each element results in a first-order differential equation. Because there are

five elements, this model is represented by five first-order equations. These equations

are subsequently shown in state-space form.

d

dt
T1 =

1

Ch

[

−
(

1

Rhk0
+

1

Rhk

+
1

Rhc

)

T1 +
1

Rhk

T2 +
1

Rhk0
Tbase +

1

Rhc

Ta

]

, (8.31)

d

dt
T2 =

1

Ch

[

1

Rhk

T1 −
(

2

Rhk

+
1

Rhc

)

T2 +
1

Rhk

T3 +
1

Rhc

Ta

]

, (8.32)

d

dt
T3 =

1

Ch

[

1

Rhk

T2 −
(

2

Rhk

+
1

Rhc

)

T3 +
1

Rhk

T4 +
1

Rhc

Ta

]

, (8.33)

d

dt
T4 =

1

Ch

[

1

Rhk

T3 −
(

2

Rhk

+
1

Rhc

)

T4 +
1

Rhk

T5 +
1

Rhc

Ta

]

, (8.34)

d

dt
T5 =

1

Ch

[

1

Rhk

T4 −
(

1

Rhk

+
1

Rhc

+
1

Rhce

)

T5 +
(

1

Rhc

+
1

Rhce

)

Ta

]

, (8.35)

Energy in by

conduction

Energy out by conduction

(or convection for top element)

Energy out by

convection
Figure 8.6. Energy balance for one element of the five-lump
model.

208 Thermal Systems

where the thermal capacitance of an element Ch, conductive resistances Rhk, and

convective resistances Rhc, are given by the following expressions:

Ch = �cpV = (2707)(896)(6.28 × 10−9) = 0.0152
J

◦C
, thermal capacitance of an

element;

Rhk0 =
L0

kAk

=
0.001

(220)(3.14 × 10−6)
= 1.45

◦C

W
, conductive resistance between

element 1 and base;

Rhk =
L

kAk

=
0.002

(220)(3.14 × 10−6)
= 2.89

◦C

W
, conductive resistance between

adjacent elements;

Rhc =
1

hc Ac

=
1

(20)(1.26 × 10−5)
= 3968

◦C

W
, convective resistance between

element sides and the
environment;

Rhce =
1

hc Ace

=
1

(20)(3.14 × 10−6)
= 16, 000

◦C

W
, convective resistance between

the top surface of element 5 and
the environment.

Although conventional analytical methods can be used to solve these equations,

computer methods are much more convenient. Figure 8.7 shows the Simulink model

that solves a state-space linear model with two inputs. The parameters of the model

are embedded in the state matrices. Because the main state matrix is a 5 × 5 matrix, it

is best to write an m-file to set up the system matrices, thus allowing the user to more

easily make modifications and experiment with the model. The m-file corresponding

to this model is shown in Table 8.2.

Figure 8.7. Simulink block diagram of pin simulation. The details of the model are embedded in
the state-space matrices.

8.3. Lumped Models of Thermal Systems 209

Table 8.2. M-file to set up state-space matrices for five-lump pin model

% Example 8.1

%

%Thermal properties for aluminum

k = 220.0;

cp = 896.0;

rho = 2702.0;

%Geometric Parameters of the model

L = 0.002;

L0= 0.001;

Ak = 3.14E−6;
Ac = 1.26E−5;
Ace = 3.14E−6;
%

hc = 20.0;

% Compute Thermal Coefficients

Ch = rho∗cp∗Ak∗L;

Rhk = L/(k∗Ak);

Rhk0 = L0/(k∗Ak);

Rhc = 1/(hc∗Ac);

Rhce = 1/(hc∗Ace);

%

T0 = 25 ∗ ones (5,1);% Set initial conditions for pin temps

a = zeros (5,5); % system matrix (5 × 5)

b = zeros (5,2); % input matrix (5 × 2)

c = eye (5); % output matrix (5 × 5)

d = zeros (5,2); % transmission (5∗2)

%

a (1,1) = −1/Ch∗(1/Rhk0+1/Rhk+1/Rhc);

a (1,2) = 1/Ch∗(1/Rhk);

%

a (2,1) = 1/Ch∗(1/Rhk);

a (2,2) = −1/Ch∗(2/Rhk+1/Rhc);

a (2,3) = 1/Ch∗(1/Rhk);

%

a (3, 2) = 1/Ch∗(1/Rhk);

a (3, 3) = −1/Ch∗(2/Rhk+1/Rhc);

a (3, 4) = 1/Ch∗(1/Rhk);

%

a (4, 3) = 1/Ch∗(1/Rhk);

a (4, 4) = −1/Ch∗(2/Rhk+1/Rhc);

a (4, 5) = 1/Ch∗(1/Rhk);

%

a (5, 4) = 1/Ch∗(1/Rhk);

a (5, 5) = −1/Ch∗(1/Rhk+1/Rhc+1/Rhce);

%

b (1, 1) = 1/(Ch∗Rhk0);

b (1, 2) = 1/(Ch∗Rhc);

b (2, 2) = 1/(Ch∗Rhc);

b (3, 2) = 1/(Ch∗Rhc);

b (4, 2) = 1/(Ch∗Rhc);

b (5, 2) = 1/Ch∗(1/Rhc+1/Rhce);

210 Thermal Systems

0 0.5 1 1.5 2 2.5 3
20

30

40

50

60

70

80

90

100
T

e
m

p
e

ra
tu

re
 (

°C
)

Time (s)

T1

T5

Figure 8.8. Temperature response of the five-lump model to step change in base temperature.

Figure 8.8 shows the temperature response of the five elements computed with this

Simulink model.

The temperature response that is in the center of the five lines represents the

temperature of the center element (T3). This response can be compared directly

with the single-lump response computed in Fig. 8.4. It is interesting to note that the

responses are similar, but by no means identical, showing that the single-lump model

does not completely represent the complexity of the pin.

Finally, Figure 8.9 represents the variation of temperature along the pin for

various points in the time response. It is important to note that, even though the Biot

number for the single-lump model indicated that the temperature could be assumed

20

30

40

50

60

70

80

90

100

T
e
m

p
e
ra

tu
re

 (
°C

)

t = 0.05 s

t = 0.1 s

t = 0.5 s

t = 1.0 s

t = 10.0 s

T1 T2 T3 T4 T5

Figure 8.9. Temperature profile along the length of the pin for various times during the response.

8.3. Lumped Models of Thermal Systems 211

Qhgen

Q2, T2

Q1, T1

Q3, T3

• Ta

, T3 •

Figure 8.10. Blending systems.

to be uniform along the pin, that conclusion would not be valid for the transient

portion of the response (less than 1 s).

EXAMPLE 8.2

Consider the blending system shown schematically in Fig. 8.10. Two identical liquids of

different temperatures T1 and T2, flowing with different flow rates Q1 and Q2, are perfectly

mixed in a blender of volume V . The mixture of liquids is also heated in the blender by an

electric heater supplying heat at a constant rate, Qhgen. There are heat losses in the system,

and the coefficient of heat transfer between the blender and ambient air of temperature

Ta is hc. Although the mixing in the tank is assumed to be perfect, the work done by the

mixer is negligible and the kinetic energies of the flows Q1, Q2, and Q3 are very small.

Derive a mathematical model of the blending process.

SOLUTION

The unsteady-flow energy-balance equation includes the following terms:

⎛

⎝

rate
of

enthalpy

⎞

⎠

1

+

⎛

⎝

rate
of

enthalpy

⎞

⎠

2

+

⎛

⎝

rate
of

heat

⎞

⎠

gen

=

⎛

⎝

rate
of

enthalpy

⎞

⎠

3

+

⎛

⎝

rate
of

heat

⎞

⎠

loss

+

⎛

⎜

⎜

⎜

⎝

rate
of

change
of

energy

⎞

⎟

⎟

⎟

⎠

sto

.

The first two terms in this equation represent the rates of enthalpy supplied with the

two incoming streams of liquids given by

Qh1 = �cpQ1(T1 − Ta),

Qh2 = �cpQ2(T2 − Ta).

The next term in the energy-balance equation represents the heat generated by the

heater, Qhgen. The heat carried away from the tank is represented by the first two

212 Thermal Systems

terms on the right-hand side of the energy-balance equation. The rate of enthalpy

carried with the outgoing stream of the mixture of the two input liquids is

Qh3 = �cpQ3(T3 − Ta) = �cp(Q1 + Q2)(T3 − Ta).

The rate at which heat is lost by the liquid through the sides of the tank to the
ambient air is

Qhloss = hc A(T3 − Ta).

Finally, the rate of change of energy stored in the liquid contained in the tank is

dE

dt
= �cpV

dT3

dt
.

Substituting detailed mathematical expressions for the heat and enthalpy rates into

the energy-balance equation yields

�cpQ1(T1 − Ta) + �cpQ2(T2 − Ta) + Qhgen

= �cp(Q1 + Q2)(T3 − Ta) + hc A(T3 − Ta) + �cpV
dT3

dt
. (8.36)

Equation (8.36) can be rearranged into the simpler form

dT3

dt
= −

1

V

(

hc A

�cp

+ Q1 + Q2

)

T3 +
Q1

V
T1 +

Q2

V
T2

+
1

�cpV
Qhgen +

hc A

�cpV
Ta . (8.37)

Equation (8.37) represents a first-order multidimensional model with six potential

input signals, Q1, T1, Q2, T2, Qhgen, and Ta . The system time constant is

� =
�cpV

hc A+ �cpQ3
.

The model can be further simplified if the blender is assumed to be perfectly insu-

lated, hc = 0, and if there is no heat generation in the system, Qhgen = 0. Under such

conditions the system state equation becomes

dT3

dt
= −

(

1

C

) (

1

R1
+

1

R2

)

T3 +
(

1

R1C

)

T1 +
(

1

R2C

)

T2,

where the lumped-model parameters C, R1, and R2, are defined as follows:

C = �cpV,

R1 =
1

�cpQ1
,

R2 =
1

�cpQ2
.

8.4 SYNOPSIS

Exact models of thermal systems usually involve nonlinear partial differential equa-

tions. Deriving closed-form analytical solutions for such problems is often impossi-

ble, and even obtaining valid computer models poses a very difficult task. Simplified

lumped models of thermal systems were introduced in this chapter. Lumped mod-

els are very useful in the early stages of system analysis and also in verifying more

Problems 8.1–8.2 213

complex computer models. It is always very important, when simplified models are

used, to make sure that such models retain the basic dynamic characteristics of the

original systems. The criterion of applicability of lumped models in thermal prob-

lems is provided by the Biot number, which is defined as the ratio of the conductive

thermal resistance to the convective thermal resistance. Thermal systems can be rep-

resented by lumped models if the Biot number is small enough – usually less than 0.1.

Basic elements of the lumped models, thermal capacitance and thermal resistance,

are analogous to the corresponding elements in mechanical and electrical systems

(although there is no thermal inductance). The state-model equations are derived

around the thermal system elements associated with the A-type variable, temper-

ature, and the T-type variable, heat flow rate. The same analytical and numerical

methods of solution of state-variable equations as those described in earlier chap-

ters can be used with thermal systems. Several examples of thermal systems were

presented, including a computer heatsink and liquid blending process, to illustrate

thermal energy storage.

PROBLEMS

8.1 A slab of cross-sectional area A and length L = L1 + L2 is made of two materials

having different thermal conductivities k1 and k2, as shown in Fig. P8.1. The left-hand-

and right-hand-side surfaces of the slab are at constant temperatures T1 = 200 ◦C and

T2 = 20 ◦C, whereas all other surfaces are perfectly insulated. The values of the system

parameters are

k1 = 0.05 W/m ◦C, L1 = 0.04 m,

k2 = 0.7 W/m ◦C, L2 = 1.4 m,

A = 1 m2.

(a) Find the temperature at the interface of the two materials.

(b) Sketch the temperature distribution along the slab.

(c) Derive an expression for an equivalent thermal resistance of the entire slab in terms

of the thermal resistances of the two parts.

k2

A

T1 T2

L2L1

k1

Figure P8.1. Thermal system considered in
Problem 8.1.

8.2 The temperatures of the side surfaces of the composite slab shown in Fig. P8.2 are

T1 and T2. The other surfaces are perfectly insulated. The cross-sectional areas of the two

parts of the slab are A1 and A2, and their conductivities are k1 and k2, respectively. The

length of the slab is L.

(a) Find an equivalent thermal resistance of the slab and express it in terms of the thermal

resistances of the two parts.

(b) Sketch the steady-state temperature distribution along the slab.

214 Thermal Systems

L

k1

T1

A2

A1

T2

k2

Figure P8.2. Thermal system considered in Problem 8.2.

8.3 A hollow cylinder is made of material of thermal conductivity k. The dimensions

of the cylinder are as follows: inside diameter Di , outside diameter Do, and length L.

The inside and outside surfaces are at constant temperatures Ti and To, respectively,

whereas the top and bottom surfaces are both perfectly insulated. Find the expression for

the lumped conductive thermal resistance of the cylinder for heat transfer in the radial

direction only.

8.4 Consider again the cylinder in Problem 8.3, assuming that the inside diameter

Di = 1 m, the outside diameter Do = 2 m, and the thermal conductivity of the material

k = 54 W/m ◦C. The outside surface of the cylinder is now exposed to a stream of air at

temperature Ta and velocity va . The inside surface remains at constant temperature Ti .

The convective heat transfer coefficient between the outside surface of the cylinder and

the stream of air is approximated by the expression hc = 2.24va . Determine the condi-

tion for the velocity of air under which the cylinder can be adequately represented by a

lumped model.

8.5 A slab of material of density � and specific heat cp, shown in Fig. P8.5, is perfectly

insulated on all its sides except the top, which is in contact with fluid of temperature Tf

in motion above the slab. The convective heat transfer coefficient between the fluid and

the top side of the slab is hc. The cross-sectional area of the slab is A, and its height is L.

(a) Determine the condition, in terms of the system parameters, under which the slab

can be described by a lumped model.

(b) Assuming that the condition determined in part (a) holds, derive the state-variable

model for the slab using its temperature Ts as the state variable and the temperature

of the fluid Tf as the input variable.

(c) Write the expression for the system response Ts(t) for a step change in the fluid

temperature from an initial equilibrium condition Tf 0 = Ts0 to �Tf .

Tf

hc

Ts
L

 , cp, kρ

.
Figure P8.5. Thermal system considered in Problem
8.5.

Problems 8.6–8.8 215

8.6 A turkey is pulled out of the oven ready to be served at a dinner. It is initially at

a uniform temperature of 180 ◦C. At the last minute, one of the invited guests calls to

say that she will be a half hour late. Assuming that the turkey can be served only if its

temperature is above 80 ◦C, can it be left at the room temperature of 20 ◦C until the late

guest arrives 30 min later? To justify your answer, perform simple calculations using a

lumped model of the turkey and the following estimates of the relevant parameters: mass

of turkey, 4 kg; specific heat, 4200 J/kg deg; heat transfer surface area, 0.5 m2; and the

convective heat transfer coefficient, 15 W/m2 deg.

8.7 A thermocouple circuit is used to measure the temperature of a perfectly mixed

liquid, as shown in Fig. P8.7. The hot junction of the thermocouple has the form of a

small sphere of radius rt . The density of the hot junction material is �t , and the specific

heat is ct . The thermal capacitance of the thermocouple wire is negligible. The measuring

voltage e21 is related to the hot junction temperature Tt by the equation e21 = aTt .

(a) Derive a mathematical model for this system relating e21 to TL.

(b) Sketch the response of e21 to a step change in the liquid temperature TL.

(c) How long will it take for the measuring signal e21 to reach approximately 95 percent

of the steady-state value after a step change of the liquid temperature? The ther-

mocouple parameters are �t = 7800 kg/m3, ct = 0.4 kJ/kg ◦C, and r1 = 0.2 mm. The

convective heat transfer between the liquid and the hot junction is hc = 150W/m2 ◦C.

1 2

Ice

Hot junctionCold junction

e21 = a(Tt − T0)

TtT0

TL

i = 0

Figure P8.7. Temperature-measuring system with a thermocouple.

8.8 Figure P8.8 shows a simple model of an industrial furnace. A packing of temperature

T1 is being heated in the furnace by an electric heater supplying heat at the rate Qhi(t).

The temperature inside the furnace is T2, the walls are at temperature T3, and ambient

temperature is Ta . The thermal capacitances of the packing, the air inside the furnace,

and the furnace walls are Ch1, Ch2, and Ch3, respectively. Derive state-variable equations

for this system assuming that heat is transferred by convection only, with the convective

heat transfer coefficients hc1 (air – packing), hc2 (air – inside walls), and hc3 (outside walls –

ambient air).

Qhi(t)

T3

T3, Ch3

T2, Ch2

T1, Ch1

Ta

Figure P8.8. Simplified model of an industrial furnace.

216 Thermal Systems

8.9 The ceramic object shown in Figure P8.9 consists of two layers having different

thermal capacitances Ch1 and Ch2. The top layer, having temperature T1, is exposed to

thermal radiation from a heater of temperature Tr and effective emissivity FE. The area

exposed to radiation is A1 and the shape factor is FA1. Both layers exchange heat by

convection with ambient air of temperature Ta through their sides of areas As . The

convective heat transfer coefficient is hc.

Tr, FE

T1, Ch1

As

T2, Ch2

A1

As

Ta •

Figure P8.9. Radiative heating system consid-
ered in Problem 8.9.

Heat is also transferred between the two layers at the rate given by

Qh12 =
(

1

R12

)

(T1 − T2) ,

where R12 represents the thermal resistance of the interface between the layers. Heat

transfer through the bottom of the lower layer is negligible.

(a) Derive nonlinear state-variable equations for this system using temperatures T1 and

T2 as the state variables.

(b) Obtain linearized state-model equations describing the system in the vicinity of the

normal operating point given by Tr , T1, T2.

8.10 A heat storage loop of a solar water-heating system is shown schematically in

Fig. P8.10. The rate of solar energy incident per unit area of the collector is S(t). The

collector can be modeled by the Hottel–Whillier–Bliss equation, which gives the rate of

heat absorbed by the collector, Qhcol:

Qhcol(t) = Ac FR[S(t) − UL(Ts − Ta)].

Solar

collector
Water

storage

tank

S(t)
Qmw, T1

Qmw, Ts

mw, Ts

Ts

Figure P8.10. Heat storage loop in a solar
water-heating system.

Problems 8.10–8.13 217

The values of the collector parameters are collector surface area, Ac = 30 m2, heat

removal factor, FR = 0.7, heat loss coefficient, UL = 4.0 W/m2 ◦C.

The rate of water flow in the loop is Qmw = 2160 kg/h and the specific heat of water is

cw = 4180 J/kg ◦C. The water storage tank has capacity mw = 1800 kg and is considered to

be perfectly insulated. It is also assumed that there are no heat losses through the piping

in the system. Derive a state-variable model for this system, assuming that the water in

the storage tank is fully mixed.

8.11 Consider again the solar heating system shown in Fig. P8.10, but now without assum-

ing that the storage tank is fully mixed. In fact, stratification of a storage tank leads to

enhanced performance of a solar heating system. Develop a mathematical model for the

system shown in Fig. P8.10, assuming that the water storage tank is made up of three

isothermal segments of equal volume. Assume also that heat conduction between suc-

cessive segments of water is negligible.

8.12 Figure P8.12 shows a segment of steel pipe with a layer of insulation. The insulation

is surrounded by a protective aluminum layer. Assume that the temperature of the fluid in

the pipe is determined by other elements of the system (and can be assumed to be an input

for this analysis). Write the equations that describe the dynamic response to changes in

the fluid temperature. Assume that both the pipe and the cladding are at uniform temper-

atures (lumped capacitances) and that the insulation has a temperature gradient along its

radius, but that the thermal capacitance of the insulation is negligible. Finally, assume no

significant heat transfer from the ends of the pipe and that the relationship between the

radius and the thickness of the layers is such that the curvature effects are not significant.

L

Qf, Tf

Ta

pipe, t1

insulation, t2

cladding, t3
inner radius, r

Figure P8.12. Cross section of pipe.

8.13 Refer to Fig. P8.12 and the appropriate assumptions described in Problem 8.12 and

the system is initially at equilibrium with Tf = 50 ◦C. If Tf experiences a sudden change

to 90 ◦C, determine the final temperature of the aluminum cladding and how long it will

take for that temperature to reach 95 percent of its final value.

Use L = 1.0 m, r = 0.1m, and the following values for your analysis:

Property/parameter Steel pipe Insulation Cladding

� (kg/m3) 7810 25 2707

k(W/m ◦C) 43.0 0.04 204.0

cp (kJ/kg ◦C) 0.473 0.70 0.896

thickness (m) t1 = 0.005 t2 = 0.05 t3 = 0.002

hc (fluid to pipe) 500 W/m2 ◦C hc (cladding to air) 20 W/m2 ◦C

218 Thermal Systems

8.14 At a picnic, a watermelon initially cooled to 5 ◦C is exposed to 30 ◦C air. Assume

that the temperature of the watermelon is uniform throughout. Assume the following

parameter values for this problem:

cp Heat capacity 4200 J/kg deg

m Mass of watermelon 4.0 kg

A Surface area 0.5 m2

h Convection coefficient 15 W/m2 deg

5

10

15

20

25

30

35

(c)

(b)

(a)

Figure P8.14. Three possible step responses for Problem 8.14.

(a) How long will it take before the watermelon warms up to 20.75 ◦C?

(b) Which of the three curves shown in Fig. P8.14 most resembles the response predicted

by this analysis?

9

Fluid Systems

LEARNING OBJECTIVES FOR THIS CHAPTER

9–1 To recognize the A-, T-, and D-type elements of fluid systems.

9–2 To use laws of continuity and compatibility to develop lumped-parameter mod-

els of hydraulic fluid systems.

9–3 To model lumped-parameter compressible (pneumatic) fluid systems by use of

ideal gas assumptions.

9.1 INTRODUCTION

Corresponding to the mass, spring, and damper elements discussed in Chap. 2, the

A-type, T-type, and D-type elements used in modeling fluid systems are the fluid

capacitor, the fluid inertor, and the fluid resistor elements.

Capacitance occurs as a result of elasticity or compliance in the fluid or in the

walls of the container. Although liquids such as water and oil are often considered to

be incompressible in many fluid flow situations, these hydraulic fluids are sometimes

compressible enough to produce fluid capacitance. In other cases, the walls of the

chambers or passages containing the fluid have enough compliance, when the fluid

pressure changes rapidly, to produce fluid capacitance. In long lines and passages, fluid

capacitance is distributed along the line, together with inertance and resistance, and

the analysis of such situations is beyond the scope of this text.1 If both the resistance

and inertance are negligible, however, it is possible to use a lumped-capacitance

model of the line.

When fluid capacitance is wanted for energy-storage purposes, specially designed

off-the-shelf capacitors with minimal resistance and inertance, called hydraulic accu-

mulators, are used. Storage tanks and reservoirs also serve as fluid capacitors. The

energy stored in a capacitor is potential energy and is related to the work required

for increasing the pressure of the fluid filling the capacitor.

When the working fluid is a compressed gas such as air, fluid compliance is much

more significant and must be accounted for even for small chambers and passages.

Inertance results from the density of the working fluid when the acceleration of

the fluid in a line or passage requires a significant pressure gradient for producing the

1 For the case of a lossless line with distributed inertance and capacitance, see J. F. Blackburn, G. Reethof,

and J. L. Shearer, Fluid Power Control (MIT Press, Cambridge, MA, 1960), pp. 83–9, 137–43.

219

220 Fluid Systems

rate of change of flow rate involved. It occurs mainly in long lines and passages, but it

can be significant even in relatively short passages when the rate of change of flow rate

is great enough. The energy stored in an inertor is kinetic, and it is related to the work

done by the pressure forces at the terminals of the element to increase the momentum

of the flowing fluid. If resistance (see subsequent discussion) is distributed along with

the inertance in a passage, a series lumped-inertance, lumped-resistance model will

be suitable, as long as the capacitance is negligible.

Fluid resistance is encountered in small passages and usually is a result of the

effects of fluid viscosity, which impedes the flow and requires that significant pressure

gradients be used to produce the viscous shearing of the fluid as it moves past the

walls of the passage. Fluid resistance often becomes significant in long lines; it is then

modeled in series with lumped inertance for the line when the rate of change of flow

rate is large. A fluid resistor dissipates energy in the fluid, resulting in an increase in

fluid temperature.

When fluid resistance results from turbulent flow in a passage, or from flow

through an orifice, the kinetic effects of predominant inertia forces in the fluid flow

result in nonlinear characteristics that can sometimes be linearized successfully.

9.2 FLUID SYSTEM ELEMENTS

9.2.1 Fluid Capacitors

The symbolic diagram of a fluid capacitor is shown in Fig. 9.1. Note that the pressure

in a fluid capacitor must be referred to a reference pressure Pr . When the reference

pressure is that of the surrounding atmosphere, it is the gauge pressure; when the

reference pressure is zero, i.e., a perfect vacuum, it is the absolute pressure. In this

respect, a fluid capacitor is like a mass—that is, one of its across variables must be a

reference.

The volume rate of flow Qc is the through variable, even though no flow “comes

out the other side,” so to speak. The net flow into the capacitor is stored and corre-

sponds to the process of charging a capacitor in electrical systems.

The elemental equation for an ideal fluid capacitor is

Qc = C f

dP1r

dt
, (9.1)

where Cf is the fluid capacitance. The simplest form of fluid capacitance arises when

the compressibility of the fluid, constrained within a rigid vessel, experiences pressure

fluctuations as the amount of fluid within it varies. This variation in pressure as a result

Qc P1

Pr

Cf

Figure 9.1. Symbolic diagram of a fluid capacitor.

9.2. Fluid System Elements 221

of addition or subtraction of fluid is the basis of a characteristic of fluids known as

the bulk modulus �, defined as

� =
�P

�V/V
. (9.2)

To interpret this equation, imagine a rigid vessel of volume V containing fluid at an

arbitrary pressure. Now add a small additional amount of fluid (�V) and measure the

resulting change in pressure (�P). The ratio given in (9.2) defines the bulk modulus

of that fluid. Therefore the fluid capacitance of a given volume of fluid in a rigid

container (often referred to as entrapped volume) is given by

C f =
V

�
. (9.3)

When Eqs. (9.2) and (9.3) are combined, the fluid capacitance can also be expressed

as

C f =
�V

�P
. (9.4)

Based on this definition, many useful relationships for common fluid capacitances can

easily be derived. Several of them are given in Fig. 9.2. Note that, when one is dealing

with compressed gases, the pressure in the capacitor must always be expressed as an

absolute pressure; that is, the pressure must be referred to a perfect vacuum.

Cw = wall compliance

Cf =

Cf =

V = chamber volume

= ∆V/∆P1

Cf = V/β + Cw

P1

where β = elastic modulus of fluid

Qc

Qc

Qc

Qc

Air

Oil

P1, T1

mair = air mass

mair RT1

P1
2

, for slow changes

mair RT1

P1

P1

mair RT1

kP1
2

, for fast changes

where

R = gas constant

T1 = gas temperature

k = gas specific heat ratio

Because = Vair

Vair , for slow changes

Vair , for fast changes
kP1

ks = spring

stiffness

AP = piston area

Cf = Ap
2/ks

Cf = Ar/γ where γ = ρg

Pr

P1

P1

Ar = cross-sectional

area of reservoir

Gravity

Figure 9.2. Typical fluid capacitors and their capacitances.

222 Fluid Systems

Q1
P1 P2

I

Figure 9.3. Symbolic diagram of a fluid inertor.

An alternative form of the elemental equation that is sometimes more useful,

especially for time-varying or nonlinear fluid capacitors, is given by

Vc = C f P1r , (9.5)

where Vc is the volume of the net flow, i.e., the time integral of Qc.

The potential energy stored in an ideal fluid capacitor is given by

�P =
C f

2
P2

1r . (9.6)

Hence the fluid capacitor is an A-type element, storing energy that is proportional

to the square of its across variable Plr, and it would be unrealistic to try to change its

pressure suddenly.

9.2.2 Fluid Inertors

The symbolic diagram of a fluid inertor is shown in Fig. 9.3. The elemental equation

for an inertor is

P12 = I
dQI

dt
, (9.7)

where I is the fluid inertance. For frictionless incompressible flow in a uniform pas-

sage having cross-sectional area A and length L, the inertance I = (�/A)L, where �

is the mass density of the fluid. For passages having nonuniform area, it is necessary

to integrate [�/A(x)]dx over the length of the passage to determine I. The expression

just given for I can be modified for a flow with a nonuniform velocity profile by appli-

cation of the unsteady-flow momentum equation to a small element of the passage

and integration across the passage area: The correction factor for a circular area with

a parabolic velocity profile is 2.0; i.e., I = (2�/A)L. Because the nonuniform velocity

profile usually results from viscosity effects, the accompanying fluid resistance would

then be modeled as a series resistor.

The kinetic energy stored in an ideal inertor is given by

�K =
I

2
Q2

I . (9.8)

Hence the inertor is a T-type element, storing energy as a function of the square of

its T-type variable; it would be unrealistic to try to change the flow rate suddenly

through an inertor.

When enough fluid compressibility or wall compliance is also present, a lumped-

parameter capacitance–inertance model might be suitable.2 The justification for using

this model would follow the lines discussed for modeling a mechanical spring in

2 For a brief discussion of lumped-parameter models of transmission lines, see Handbook of Fluid

Dynamics, edited by V. L. Streeter (McGraw-Hill, New York, 1961), pp. 21–24 through 21–28.

9.2. Fluid System Elements 223

QR
P1 P2

Rf

Figure 9.4. Symbolic diagram of a fluid resistor.

Chap. 2. Otherwise, a distributed-parameter model is needed, which is beyond the

scope of this book.

9.2.3 Fluid Resistors

The symbolic diagram of a fluid resistor is shown in Fig. 9.4.

The elemental equation of an ideal fluid resistor is

P12 = Rf QR, (9.9)

where Rf is the fluid resistance, a measure of the pressure drop required for forcing

a unit of flow rate through the resistor. Alternatively, the elemental equation may be

expressed by

QR =
1

Rf

P12. (9.10)

Figure 9.5 shows some typically encountered linear fluid resistors, together with

available expressions for their resistance.

When the flow in a passage becomes turbulent or when the flow is through an

orifice, a nonlinear power-law relationship is used to express the pressure drop as a

function of flow rate:

P12 = CRQn
NLR (9.11)

Capillary passage

QR
P1 P2

Rf

A

L

A

(a)

(b)

Section A − A

d

Rf = 128 L/πd 4

Rf = 12 L/wb3

b

 = absolute viscosity of fluid

w >> b

QR
P1 P2

Rf

Rf is usually determined by

experimental measurement

Porous plug (ceramic, granular, fibrous)

w

µ

µ

µ

Figure 9.5. Linear fluid resistors: (a) capillary passages and (b) porous plugs.

224 Fluid Systems

P12

L-to-T transition
T-to-L transition

QNLR

Hysteresis “loop”

Figure 9.6. Steady-state pressure drop vs.
flow rate characteristics for a fluid line under-
going laminar-to-turbulent-to-laminar transi-
tion.

where CR is a flow constant and n is either approximately 7/4 (from the Moody

diagram) for turbulent flow in long, straight, smooth-walled passages or 2 (from

Bernoulli’s equation) for flow through a sharp-edged orifice. The latter is a particu-

larly useful relationship because it closely approximates the condition of flow through

a valve. In those cases, the pressure-flow relationship is often given in this form:

QNLR = AoCd

√

2

�
P12. (9.12)

For valve flow, Ao is the cross-sectional area of the valve port, Cd is the sharp-edged

discharge coefficient, assumed to be 0.61 in the absence of additional information

from the valve manufacturer, and � is the mass density of the fluid. Section 9.4

presents the use of this equation to model flow through a commercial hydraulic valve.

For more demanding applications, for which more accurate models are needed, it

is necessary to experimentally determine the nonlinear relationship between the

pressure drop and the flow rate.

When a flow in a passage that undergoes transition from laminar to turbulent

to laminar is to be modeled, hysteresis is likely to be present, as shown in Fig. 9.6.

Careful measurements of the actual line should be made to determine the transition

points, and so on.

In pneumatic systems, in which the fluid is very compressible, the Mach number

of an orifice flow can easily exceed 0.2, and for cases involving such high local flow

velocities, the compressible flow relations must be used or approximated.3 The flow

rate is then expressed in terms of mass or weight rate of flow because volume rate of

flow of a given amount of fluid varies so greatly with local pressure. A modified form

of fluid capacitance is then needed, unless the local volume rate of flow is computed at

each capacitor. Section 9.5 discusses the application of these principles to pneumatic

systems.

9.2.4 Fluid Sources

The ideal sources used in fluid system analysis are shown in Fig. 9.7. An ideal pressure

source is capable of delivering the indicated pressure, regardless of the flow required

by what it is driving, whereas an ideal flow source is capable of delivering the indicated

flow rate, regardless of the pressure required for driving its load.

3 For a discussion of compressible flow effects in orifices, see J. F. Blackburn et al., op. cit., pp. 61–80,

214–34.

9.3. Analysis of Fluid Systems 225

P1 P2

Q

P21 = Ps

(a)

P1 P2

Q

Q = Qs

(b)

Ps
+ Qs Figure 9.7. Ideal fluid sources: (a) pressure

source and (b) flow source.

9.2.5 Interconnection Laws

The two fluid system interconnection laws, corresponding to Kirchhoff’s laws for

electrical systems, are the laws of continuity and compatibility. The continuity law

says that the sum of the flow rates at a junction must be zero, and the compatibility

law says that the sum of the pressure drops around a loop must be zero. These laws

are illustrated in Fig. 9.8.

9.3 ANALYSIS OF FLUID SYSTEMS

The procedure followed in the analysis of fluid systems is similar to that followed

earlier for mechanical and electrical systems: Write the elemental equations and the

interconnection equations and then (a) combine, removing unwanted variables, to

obtain the desired system input–output differential equation or (b) build a state-

variable equation around each energy-storage element by combining to remove all

but the state variables for the energy-storage elements. These state variables are

(a) pressure for capacitor (A-type) elements and (b) flow rate for inertor (T-type)

elements.

EXAMPLE 9.1

Find a set of state-variable equations and develop the input–output differential equation

relating the output pressure P3r to the input pressure Ps for the fluid system shown in

Fig. 9.9.

B

C

A

QC

QBQA

Continuity QA + QB + QC = 0 Compatibility Pr1+ P12 + P2r = 0 or

P1r = P12 + P2r

P1 P2

CA

Pr

B

(b)
(a)

Figure 9.8. Illustration of continuity and compatibility laws.

226 Fluid Systems

QR

Rf

P2 P3P1

I

Ps
+

Pr

Sump

Figure 9.9. A simple fluid R, I, C system.

SOLUTION

The elemental equations are as follows: For the fluid resistor,

P12 = Rf QR. (9.13)

For the inertor,

P23 = I
dQR

dt
. (9.14)

For the fluid capacitor,

QR = C f

dP3r

dt
. (9.15)

Continuity is satisfied by use of QR for QI and Qc. To satisfy compatibility.

Ps = P1r = P12 + P23 + P3r . (9.16)

Combining Eqs. (9.13), (9.14), and (9.16) to eliminate P12 and P23 yields

I
dQR

dt
= Ps − Rf QR − P3r . (9.17)

Rearranging Eq. (9.17) yields the first state-variable equation:

dQR

dt
= −

Rf

I
QR −

1

I
P3r +

1

I
Ps . (9.18)

Rearranging Eq. (9.15) yields the second state-variable equation:

dP3r

dt
=

1

C f

QR. (9.19)

Combining Eqs. (9.18) and (9.19) to eliminate QR and multiplying all terms by I yields

the input–output system differential equation:

C f I
d2 P3r

dt2
+ Rf C f

dP3r

dt
+ P3r = Ps . (9.20)

9.3. Analysis of Fluid Systems 227

QR

Rf

QNLR

P1

Pr

Sump

= constant

QcP2

P2

Cf(1)

(2)

Qs

NLR

(Ao = input)

Figure 9.10. Simple fluid control system.

EXAMPLE 9.2

A variable-orifice NLR is being used to modulate the flow rate QNLR and control the

pressure P2r in the simple fluid control system shown in Fig. 9.10. The flow equation

for the orifice is QNLR = Cl Ao(P2r)
0.5. Develop the input–output differential equation

relating small changes in the output pressure P2r to small changes in the orifice area Ao

when the supply flow Qs is constant.

SOLUTION

The elemental equations for small perturbations in all variables are as follows: For the

linear resistor,

P̂12 = Rf Q̂R. (9.21)

For the fluid capacitor,

Q̂c = C f

dP̂2r

dt
. (9.22)

For the time-varying NLR,

Q̂NLR =

(

C1 Ao

2|P2r |0.5

)

P̂2r + C1|P2r |0.5 Âo. (9.23)

To satisfy continuity at (1),

Q̂R = Q̂s . (9.24)

To satisfy continuity at (2),

Q̂R = Q̂C + Q̂NLR. (9.25)

The compatibility relation,

P̂1r = P̂12 + P̂2r , (9.26)

is not needed here because of a lack of interest in finding P̂1r .

228 Fluid Systems

Combining Eqs. (9.22)–(9.25) to eliminate Q̂R, Q̂C , and Q̂NLR yields

Q̂s = C f

dP̂2r

dt
+

(

C1 Ao

2|P2r |0.5

)

P̂2r + C1|P2r |0.5 Âo. (9.27)

Because Qs is constant, Q̂s is zero, and the output terms on the right-hand side may be

rearranged to yield the system input–output differential equation for small perturbations

in all variables:

C f

dP̂2r

dt
+

(

C1 Ao

2|P2r |0.5

)

P̂2r = −C1|P2r |0.5 Âo. (9.28)

9.4 ELECTROHYDRAULIC SERVOACTUATOR

In this section, a common high-performance hydraulic system is described and mod-

eled. Electrohydrualic servoactuators are found on aerospace and robotic systems

for which accurate and fast responses are required in the presence of large and

unpredictable external loads. A servoactuator is made up of a hydraulic cylinder (or

rotary actuator) closely coupled to an electrohydraulic servovalve. Figure 9.11 shows

a servoactuator in schematic form.

The key component in this system is the servovalve. Servovalves are specially

designed flow control valves that are capable of modulating flow between zero and

some rated value. This is in contrast to most hydraulic valves, which are designed

to control only flow direction by moving an internal component, the valve spool,

between two or three preferential positions.

Figure 9.12 shows a cutaway view of a valve spool and ports of a typical four-way

hydraulic valve. Note that the internal component, the valve spool, is free to move in

a cylindrical bore that has ports cut into it. As the spool moves to the right, it exposes

the control ports (C1 and C2) to the supply pressure and return ports, respectively.

As the spool moves to the left, the connections are reversed and fluid can flow from

supply to C2 and from C1 to return. A servovalve has a complex mechanism that

allows the spool to be rapidly and accurately positioned at any point between fully

Port S (supply) Port R (return)

servovalve

amplifier

servovalve

hydraulic

actuator

Port C1
Port C2

xactP2,V 2
P1,V 1

ecommand

Fext

kact

bact

mact

Flow Q1
Flow Q2

Figure 9.11. Electrohydraulic servoactuator.

9.4. Electrohydraulic Servoactuator 229

C1 C2

S

R

valvex

Figure 9.12. Cutaway view of a four-way valve.

closed and fully open. The mechanism that accomplishes this includes a stationary

coil (stator), a movable ferrous component (armature), a flexible component, and

flapper valves. A detailed analysis of servovalves lies beyond the scope of this text, but

more information is readily available from companies that manufacture and supply

the valves such as Moog, Inc., of Albany, NY.

Manufacturers’ specifications for servovalves include the response of the valve

spool, that is, how fast one can expect the valve spool to change position in response

to changes in the current in the valve coil. For most applications, a second-order linear

model adequately describes this response, and the parameters of that model (coef-

ficients of the differential equation) can be derived from manufacturers’ literature.

The form of the model equations is

ẋvalve = vvalve, (9.29)

v̇valve = a1vvalve + a0xvalve + b0ecommand, (9.30)

where a1, a0, and b0 are the model coefficients.

Equations (9.29) and (9.30) make up the first two state equations for the model

of the servoactuator.

From Fig. 9.11, the remaining required states can be deduced. There are two

energy-storing elements in the mechanical part of the system. One is the combined

mass of the piston, piston rod, and the external load, mact, and the other is the spring

kact. The appropriate state variables for these two elements are the position and the

velocity of the actuator:

ẋact = vact, (9.31)

v̇act =
1

mact
[(P1 − P2)Apist − bactvact − kactxact − Fext], (9.32)

where kact, bact, and mact represent the combined stiffness, damping, and mass associ-

ated with the motion of the actuator and its load. For example, bact is associated with

the velocity-dependent force encountered by the actuator as it moves. This force will

come from both the piston itself (sliding inside the cylinder) and the external mecha-

nism to which the actuator is attached. Any externally applied load force (considered

a model input for this discussion) can be considered as Fext.

230 Fluid Systems

On the hydraulic side of the system, the motive force for the actuator comes

from pressures in the cylinder, which, in turn, result from flow entering and leav-

ing the actuator by way of the valve. The entrapped volumes between the valve

and the actuator piston can be modeled as fluid capacitances (see Subsection 9.2.1)

and the pressures P1 and P2 are the remaining state variables representing the poten-

tial energy stored in the two hydraulic capacitors:

.
P1 =

1

C f 1
(Q1 − Apistvact), (9.33)

.
P2 =

1

C f 2
(Apistvact − Q2), (9.34)

where

C f 1 =
V1(xact)

�
, (9.35)

C f 2 =
V2(xact)

�
, (9.36)

and � is the bulk modulus of the fluid, defined in Subsection 9.2.1, and is a physical

property that quantifies the relationship between the change in pressure and the

change in volume.

Note that the definitions of the fluid capacitances indicate that the entrapped

volumes (V1 and V2) are dependent on the instantaneous position of the piston

within the actuator. Also note the sign assumptions for Q1 and Q2. Q1 is defined as

the flow out of valve port C1 and into the left-hand side of the cylinder in Fig. 9.11.

Q2 is defined as the flow into the valve at port C2 coming from the right-hand side

of the cylinder. These definitions are arbitrary but must be consistent with the valve

flow equations subsequently described.

Equations (9.29)–(9.34) are the six state-variable equations that describe the

servoactuator. However, the model is incomplete because the flows through the

valves (Q1 and Q2) are not described as functions of the state variables.

Subsection 9.2.3 describes the algebraic relationship between flow and pressure

differential through many types of fluid resistance elements. In general, spool valves

like the one shown in Fig. 9.12 are modeled as sharp-edged orifices with turbulent

flow in which the flow is proportional to the square root of the pressure differential

across the valve. For example, if the position of the valve spool is positive (to the

right in Fig. 9.12), then Q1 can be modeled as

Q1 = Cd Av

√

2

�
(Ps − P1), (9.37)

where Cd is the orifice coefficient, generally taken as 0.61 for valve applications

and Av is the cross-sectional area of the valve orifice, which is the area of the port

exposed by the valve spool. Further examination of Fig. 9.12 shows that the orifice

area is directly proportional to the valve position, xvalve. In general, the actual port is

rectangular in shape, and this area is equal to the product of the valve spool position

9.4. Electrohydraulic Servoactuator 231

and the width of the valve port, wvalve. Equation (9.37) can now be rewritten in terms

of xvalve:

Q1 = Cdwvalvexvalve

√

2

�
(Ps − P1). (9.38)

Two other considerations remain before the model is complete. First, Eq. (9.38) can-

not be evaluated if the pressure in the cylinder (P1) is higher than the supply pressure.

Although it may not be intuitively obvious, it is entirely possible that such a condi-

tion might exist, if only for a brief period, and the equations should be modified to

allow for that possibility. Second, if the valve spool position is negative, Q1 and Q2

represent flows to and from different valve ports. The following conditional equa-

tions adequately account for these situations. Note that the formulation is somewhat

simplified by the reasonable assumption that the pressure at the return port of the

valve (normally connected directly to the reservoir) is zero.

If xvalve > 0,

Q1 = Cdwvalvexvalve sgn(Ps − P1)

√

2

�
|Ps − P1|, (9.39)

Q2 = Cdwvalvexvalve

√

2

�
(P2). (9.40)

If xvalve < 0,

Q1 = Cdwvalvexvalve

√

2

�
(P1), (9.41)

Q2 = Cdwvalvexvalve sgn(Ps − P2)

√

2

�
|Ps − P2|. (9.42)

In the following example, the six-state electrohydraulic servoactuator model is sim-

ulated by use of Simulink.

EXAMPLE 9.3

An electrohydaulic servoactuator is used in a military aircraft to precisely control the

position of a flight control surface. The effective mass of the control surface and the

actuation mechanism is 40 kg (including the moving part of the actuator), and the effective

stiffness of the mechanism is 800 N/m. It has been estimated that the overall linear

damping is about 6000 N s/m.

The hydraulic cylinder has a bore of 0.1 m, a rod diameter of 0.02 m, and a total

stroke of 0.7 m. The valve is a high-performance servovalve rated at 5 gal/min, capable

of responding to sinusoidal commands as high as 100 Hz without significant degradation.

Develop a simulation of this system by using Simulink. As a test of the model, simulate

the response of the actuator to an input that commands the valve from fully closed, to

fully open for 0.5 s, then fully closed again.

The model parameters are summarized in Tables 9.1 and 9.2.

Figure 9.13 shows a Simulink model of the servoactuator. Although the diagram

is fairly complicated, it helps to focus on the integrator blocks. Note that there are six

integrator blocks, two associated with the valve position (servovalve dynamics), two

232 Fluid Systems

Table 9.1. Servovalve and fluid parameters

Parameter Value Units

wvalve 0.0025 m
b0 90 m/V s2

a0 360,000 1/s2

a1 1000 1/s
�fluid 689.0 MPa
�fluid 900 kg/m3

Cd 0.61
Psupply 20.7 MPa

Note: These parameters are consistent with an MTS 252.23 or Moog 760-X19 servo-

valve/servoamplifier set up to respond to a voltage command of +/− 10 V.

Table 9.2. Load/actuator parameters

Parameter Value Units

mact 40 kg
bact 6000 N s/m
kact 800 N/m
Stroke 0.7 m
Apist 0.0075 m2

Figure 9.13. Simulink model of an electrohydraulic actuator.

9.4. Electrohydraulic Servoactuator 233

Table 9.3. M-file function to compute valve flows

function pdots = vflow (u)

%

% function to compute valve flows and

% pressure derivatives

%

% u(1) = valve position

% u(2) = P1

% u(3) = P2

% u(4) = actuator position

% u(5) = actuator velocity

%

% parameters

%

Apist = 0.0075; % mˆ2

S = 0. 7; % m

B = 6. 89E8; % Pa

rho = 900.0; % kg/mˆ3

Cd = 0.61;

wv = 0.0025; % m

Ps = 2.07E7; % Pa

%

if u(1) > = 0

Q1 = Cd*wv*u(1) * sign(Ps−u(2)) * (2/rho*abs(Ps−u(2)))ˆ0.5;
Q2 = Cd*wv*u(1) * (2/rho*u(3))ˆ0.5;

else

Q2 = Cd*wv*u(1) * sign(Ps−u(3)) * (2/rho*abs(Ps−u(3)))ˆ0.5;
Q1 = Cd*wv*u(1) * (2/rho*u(2))ˆ0.5;

end

%

Cf1 = 1/B*1.2*Apist * (S/2+u(4));
Cf2 = 1/B*1.2*Apist * (S/2−u(4));
%Cf1 = (Apist*S/2)/B;

%Cf2 = (Apist*S/2)/B;

%

pdots(1) = 1/Cf1 * (Q1 − Apist*u(5));

pdots(2) = 1/Cf2 * (Apist* u(5) − Q2);

pdots(3) = Q1;

pdots(4) = Q2;

associated with the actuator/load combination, and two associated with the pressures

on either side of the actuator position. Note that the latter two blocks (P1 and P2) are

somewhat different in that they are internally limited by the software so that they cannot

go negative (this is done by use of the dialog box associated with the integrators).

Finally, note that the equations associated with the valve flow [(9.39)–(9.42)] as well

as the computation of the pressure derivatives are embedded in a function call. Table 9.3

lists the MATLAB code associated with this function.

Simulation Results In this model, very fast dynamics associated with the fluid capac-

itances are combined with the relatively slow load dynamics, giving rise to a system

234 Fluid Systems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2

2.5

3
x 10−3

Time (s)

x v
a

lv
e
 (

m
)

Figure 9.14. Valve spool position response.

that is rather stiff (see Section 5.6). Therefore the ODE15S algorithm is used in

Simulink to compute the response.

As described in the beginning of the example, the input to the simulation is a

time-varying voltage that is at 0 V at the initial time, rises to 10 V at 0.5 s, and returns

to 0 V at 1.0 s. According to our knowledge of the system, we would expect the

servovalve to open to its fully open position (corresponding to a 10-V command)

at 0.5 s and return to the closed position at 1.0 s. Figure 9.14 shows the valve spool

response from the simulation that confirms this expectation.

Figure 9.15 shows the flow rates through the valve for the system. Note that the

flow rate into the left-side chamber responds nearly instantly when the valve opens,

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

6

8

10
x10

−4

Time (s)

F
lo

w
 R

a
te

 (
m

3
/s

)

Q1

Q2

Figure 9.15. Valve flow rates Q1 and Q2.

9.5. Pneumatic Systems 235

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time (s)

P
o
s
it
io

n
 (

m
)

a
n
d
 V

e
lo

c
it
y
 (

m
/s

) vact

xact

Figure 9.16. Velocity and position of servoactuator load.

but the return side flow is slow to respond because this flow arises as the load piston

“sweeps” the low-pressure fluid out of the actuator.

Finally, the motion of the actuator is shown in Fig. 9.16. Note that the velocity

shows considerable oscillation at the points of valve opening and closure, in spite of

the fact that the damping coefficient is relatively high. This is typical with electro-

hydraulic servosystems because the dynamics associated with the actuator pressures

and valve flows is usually highly underdamped.

9.5 PNEUMATIC SYSTEMS

Up to this point, this chapter has dealt with fluid systems in which the effects of fluid

compressibility are small, but not necessarily negligible. Thus the volume occupied

by a given mass of fluid has been nearly constant throughout the system in which it

was being used, regardless of the pressure changes that occurred as the fluid mass

moved from one part of the system to another. For the compressibility effects in the

fluid to be small enough, the fluid has had to be a liquid that was not near its boiling

point – in other words, a hydraulic fluid such as water or oil at ambient temperature;

or, if gaseous – in other words, a pneumatic fluid – the gross changes in pressure have

had to be small enough so that the density changes were only of the order of a few

percent.

Thus the discussions and methods used so far have been limited to what are

commonly known as hydraulic systems. In this section we deal with modifications

of the describing equations needed to cope with pneumatic systems, in which fluid

compressibility plays a much greater role than in hydraulic systems.

Of foremost concern in the analysis of pneumatic systems is the need to satisfy

the continuity requirement at connecting points between elements (in other words,

at node points). This makes it necessary to use mass or weight rate of flow as the

236 Fluid Systems

T variable instead of volume rate of flow.4 Also, it is necessary to use different or

modified elemental equations to incorporate the greater effects of compressibility

on the flow relations for the pneumatic system elements.

Here we use as the T variable the weight rate of flow Qw = �vave A instead

of volume rate of flow Q = vave A, where � is the local weight density of the fluid

and vave is the mean velocity in a flow passage of cross-sectional area A. Similar

procedures may be followed if one wishes to use mass rate of flow Qm = �vave A,

where � is the local mass density of the fluid, or to use the standard volume rate of

flow Qs = (P/T)(Ts/Ps)vave A, where P and T are the local pressure and temperature

of the fluid and Ps and Ts are the standard pressure and temperature conditions to

be used.

First, we modify the elemental equation for a fluid capacitor [Eq. (9.1)] by mul-

tiplying both sides by the local weight density of the fluid � :

QwC = Cfw

dP1r

dt
, (9.43)

where QwC = � QC and Cfw = �C f .

The most commonly encountered form of pneumatic capacitor is a chamber or

passage filled with the pneumatic fluid (usually air, but other gases, such as nitrogen,

oxygen, helium, etc., are used as pneumatic working fluids). Thus the expressions

shown for the gaseous part of a gas-charged hydraulic accumulator in Fig. 9.2 are

directly available for modification.

In the modifications that follow, it is assumed that the gaseous fluid behaves as

a perfect gas (in other words, it is not so highly compressed so as to be near its liquid

state) and obeys the perfect-gas law P = � RT = (�/g)RT, where R is its perfect-gas

constant and g is the acceleration that is due to gravity.

Thus the expression for the modified fluid capacitance of a gas-filled chamber of

constant volume is

Cfw =
{

�1V/P1 = gV/(RT1), for very “slow” changes in P1

�1V/kP1 = gV/(kRT1), for very “fast” changes in P1
, (9.44)

where V is the total volume of the gas-filled chamber, P1 is the absolute pressure

of the chamber gas, the specific heat ratio k = cp/cv for the chamber gas and T1 is

the absolute temperature of the chamber gas. The term “slow” here denotes changes

that take place slowly enough for heat transfer from the surroundings to keep the

chamber gas temperature constant – in other words, the changes in the chamber are

isothermal. The term “fast” here denotes changes that occur so rapidly that heat

transfer from the surroundings is negligible – in other words, the changes in the

chamber are adiabatic. For cases in which the rapidity of change is intermediate,

a polytropic coefficient n, where 1.0 < n < 1.4, may be used instead of k for the

adiabatic case – that is, the equation for ”fast” changes.

When the capacitor consists of a cylinder with a spring-restrained piston of area

Ap (see Fig. 9.2) or a bellows of area Ap and spring stiffness ks enclosing a storage

4 Another alternative is to use an equivalent standard volume rate of flow in which the mass of the fluid

is expressed in terms of the volume that it would occupy if it were at some standard pressure and

temperature such as ambient air at sea level.

9.5. Pneumatic Systems 237

chamber, and the fluid is a compressible gas, the capacitance consists of two parts:

(a) a part resulting from the compressibility of the gas in the chamber and (b) a part

resulting from changes in volume V and energy storage in the spring ks :

C f̂ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

gV(t)

RT1
+

g P1(t)A2
P

RT1ks

, for very slow changes in P1

gV(t)

kRT1
+

g P1(t)A2
P

RT1ks

, for very fast changes in P1

. (9.45)

Note that P1 must be expressed as an absolute pressure and that P1 and V are now

functions of time. The absolute temperature T1 also varies slightly with time, but

this variation superposed on its relatively large absolute value usually represents a

negligible effect. Using absolute zero pressure (a perfect vacuum) as the reference

pressure (for example, Pr) eliminates the problem of having some pressures being

absolute pressures and some being relative (or gauge) pressures.

The equation for an ideal pneumatic inertor having a uniform-flow velocity pro-

file across its cross-sectional area is obtained by modification of Eq. (9.7) so that

QwI = � Q1 and Iw = I/� = L/(g A):

P12 = Iw
dQwI

dt
, (9.46)

where � = g(P1 + P2)/RT is the average weight density of the gas in the passage.

Note that a gas-filled passage is more likely to need to be modeled as a chamber-

type pneumatic capacitor having inflow and outflow at its ends than as an inertor;

or it may even need to be modeled as a long transmission line having distributed

capacitance and inertance, requiring partial differential equations, which is beyond

the scope of this text.5

The capillary or porous plug type of hydraulic resistor that was modeled earlier

as a linear resistor with resistance Rf becomes nonlinear with a compressible gas

flowing through it, having the nonlinear elemental equation

QwNLR = Kw

(

P2
1 − P2

2

)

, (9.47)

where Kw is a conductance factor that needs to be evaluated experimentally for best

results. (This nonlinear model is limited to operation of the device with flow velocities

of Mach numbers less than 0.2, because at higher Mach numbers the operation begins

to resemble that of an orifice.)

For pneumatic flow through sharp-edged orifices, the flow rate is related to the

ratio of the downstream pressure to the upstream pressure by the classical equation

5 For discussions of transmission line models, see J. Watton, Fluid Power Systems (Prentice-Hall, New

York, 1989), pp. 224–48; J. F. Blackburn et al., op. cit., pp. 81–8; and V. L. Streeter, ed., op. cit., pp. 21–20

through 21–22.

238 Fluid Systems

for isentropic flow of a perfect gas through a converging nozzle,6 corrected for the

vena contracta effect by use of a discharge coefficient Cd:

QwNLR

Cd Ao
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C2 Pu

(Tu)0.5
, for 0 <

Pd

Pu
< PRcrit, “choked flow”

C2 Pu

(Tu)0.5C3

(

Pd

Pu

)1/k
[

1 −
(

Pd

Pu

)k−1/k
]0.5

,

for PRcrit <
Pd

Pu
< 1.0, “unchoked flow, ”

(9.48)

where

Cd = discharge coefficient, approximately 0.85 for air,

Ao = orifice area, in2 (m2),

QwNLR = the weight rate of flow, lb/s (N/s),

C2 = g

√

k

R

(

k + 1

2

)k+1/k−1

= 0.532(◦R)0.5/s for air

[0.410(K)0.5/s],

C3 =

√

2
(

k+1
2

)k+1/k−1

k − 1
= 3.872 for air,

PRcrit =
(

2

k + 1

)k/(k−1)

= 0.528 for air,

Pu = upstream pressure, lb/in2 (N/m2),

Pd = downstream pressure, lb/in2 (N/m2),

Tu = upstream temperature,◦R (K),

R = the perfect-gas constant = 2.48 × 105 in2
/(s2 ◦R)

[268 m2/(s2 K)],

k = the specific heat ratio
cp

cv

= 1.4 for air.

A very close approximation, requiring much less computing effort, can be

obtained by use of the following relationship for gases such as air having k = 1.4:

QwNLR

Cd Ao
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C2 Pu

(Tu)0.5
, for 0 <

Pd

Pu
< 0.5

2C2 Pu

(Tu)0.5

[

Pd

Pu

(

1 −
Pd

Pu

)]0.5

, for 0.5 <
Pd

Pu
< 1.0

. (9.49)

This approximation leads to values of weight flow rate for air that are consis-

tently lower than the values obtained by use of the ideal isentropic flow equation

[Eq. (9.40)], but that never depart by more than 3% from the ideal values.

When P1 > P2 the flow is from (1) to (2), and Pd = P2 and Pu = P1. However,

when P2 > P1, the flow is reversed, and Pd = P1 and Pu = P2.

The graph for QwNLR vs. P1/P2 for the complete range of P1/P2 from zero to

a very large value is plotted in Fig. 9.17(a). The curve shown in Fig. 9.17(b) is the

square-law graph of the volume flow rate Q vs. (P1 − P2) for ideal hydraulic orifice

flow, included for comparison purposes.

6 J. F. Blackburn et al., op. cit., pp. 214–23.

9.5. Pneumatic Systems 239

QwNLR

−1.0

−1.0

0 1.0 2.0 3.0

1.0 2.0 3.0 4.0

Alternate scale

(a)

Ao

P1, T P2, T

P1/P2

2.01.0 3.0

(1)

(

(

(2)

2C2P2

√T

QwNLR

CdAo

C2P2

√T

C2P2

√T
−

QwNLR = CdAo

C2Pu

√Tu

Pd

Pu

f

P1

P2

−1

QNLR

CdAo

(P1 − P2)

2
ρ

2
ρQNLR = CdAo

P1− P2

(P1− P2)

2
ρ

−

(b)

0

Figure 9.17. Weight flow rate vs. pressure graphs for flow through a sharp-edged orifice of area Ao

(a) for air and (b) for a liquid fluid such as water or light oil.

EXAMPLE 9.4

The pneumatic amplifier shown schematically in Fig. 9.18 has been widely used in pneu-

matic instruments for measurement and automatic control in the process industries, for

heating and ventilating controls, and in certain military and aerospace systems. It oper-

ates from a pressure source of clean air much as an electric circuit would operate from

a battery. Usually the working fluid is air drawn continuously from the atmosphere by

a pressure-controlled air compressor. After losing pressure as it flows through a fixed

240 Fluid Systems

Constant

supply

pressure

Flapper

P1, Tatm
P2, Tatm

P1 = Ps + Patm

Nozzle
Patm

Patm

Ao

(1) (2)

Qwa
Qwb

Qwc

a a

 = AP(x20 + x2)

P2

Tatm

ks x20 = length

when P2 = Patm

(r2)
x2

x1
(r1)

Ap’ bellows area

Orifice area = πD
x1

2
D

Ps

+

Figure 9.18. Schematic diagram of a pneumatic amplifier system.

orifice of area Ao, the flow rate Qwa approaches the branch point or node (2) from which

part may flow as Qwb to the bellows chamber and part may flow as Qwc through the

flapper-nozzle orifice back to the atmosphere.

The atmospheric pressure Patm can serve as a secondary reference, but the primary

reference is a perfect vacuum so that all pressures (except Ps) are expressed as absolute

pressures.

This system is referred to as an amplifier because the energy or power required for

actuating the input x1 is usually only a tiny fraction of the energy or power available

to produce the output x2. As an amplifier it is then useful, when combined with other

elements, for executing control functions in complete systems.

During operation at a steady-state normal operating point, the pressure P2 and the

output x2 are constant, and the flow rate Qwb is zero.

(a) Find the normal operating-point values x1 and x2 when P2 = 0.4P1, where P1 =
50.0 lb/in2 absolute.

(b) Write the necessary and sufficient set of describing equations for this system and

develop the state-variable equation for this first-order system using P2 as the state

variable and using symbols wherever possible. Assume that changes in P2 occur

slowly (isothermal chamber).

(c) Linearize the describing equations for small perturbations and combine to form a

linearized state-variable equation, using P̂2 as the state variable. Write the necessary

output equation for x̂2 as the output variable.

(d) Develop the linearized system input–output differential equation relating x̂2 to x̂1

and find and sketch the response of x̂2 to a small step change in x1, x̂1 = D/50.

SOLUTION

(a) At the normal operating point, Qwa = Qwc, and, because (P2/P1) < 0.5, the flow

through Ao is choked, so that, from Eq. (9.49),

Qwa =
Cd1 AoC2 P1

(Tatm)0.5
.

9.5. Pneumatic Systems 241

Because Patm/P2 = 14.7/20.0 = 0.735, the flow through the flapper-nozzle orifice is not

choked, so that, from Eq. (9.49),

Qwc = Cd2�D

(

x1

2

)

C2(0.4P1)(2.0)

[

(0.735)(0.265)

Tatm

] 0.5

.

Equating these flows then yields

x1 =
Ao

(0.1764)(3.1416)(0.15)
= 12.03Ao. (9.50)

For x2,

x2 =
(P1 − Patm)Ap

ks

=
45.3Ap

ks

. (9.51)

(b) The describing equations are as follows. For orifice Ao, by use of Eq. (9.49),

Qwa =
Cd1 AoC2 P1

(Tatm)0.5
. (9.52)

For the flapper-nozzle orifice, by use of Eq. (9.49),

Qwc = Cd2�Dx1C2 P2

⎧

⎨

⎩

[(

Patm

P2

) (

1 − Patm

P2

)]

Tatm

⎫

⎬

⎭

0.5

. (9.53)

For the bellows capacitor, by use of Eq. (9.39),

Qwb = Cf w

dP2

dt
, (9.54)

where, by use of Eq. (9.45) (isothermal case),

Cf w =
g Ap

RTatm

(

x20 + x2 +
P2 Ap

ks

)

. (9.55)

For the bellows spring,

x2 = Ap

P2 − Patm

ks

, (9.56)

and continuity at node (2) in Fig. 9.18,

Qwa = Qwb + Qwc. (9.57)

Combining Eqs. (9.52)–(9.57) yields the nonlinear state-variable equation,

dP2

dt
=

[

(

−Cd2C2�Dx1

Cf w

√
Tatm

)

√

(

Patm

P2

) (

1 −
Patm

P2

)

]

P2 +
(

Cd1C2

Cf w

√
Tatm

)

P1 Ao. (9.58)

(c) Linearizing Eq. (9.52) for small perturbations yields

Q̂wa = 0. (9.59)

For the flapper-nozzle orifice, by use of Eq. (9.53),

Q̂wc = k1 x̂1 + k2 P̂2, (9.60)

242 Fluid Systems

where

k1 = Cd2�DC2

(

Patm
P2 − Patm

Tatm

)

, (9.61)

k2 = Cd2�D

(

x1

2

)

C2 Patm

[Tatm Patm(P2 − Patm)]0.5
. (9.62)

For the bellows capacitor, from Eqs. (9.54) and (9.55),

Q̂wb =
g Ap(x20 + x2 + P2 Ap/ks)

RTatm

dP̂2

dt
. (9.63)

For the bellows spring, from Eq. (9.56),

x2 =
Ap

(

P2 − Patm

)

ks

, (9.64)

x̂2 =
(

Ap

ks

)

P̂2. (9.65)

Combining Eqs. (9.63), (9.64), and (9.65) yields

Q̂wb = k3
dP̂2

dt
, (9.66)

where

k3 =
g Ap

(

x20 −
Ap Patm

ks

+
2Ap P2

ks

)

RTatm
. (9.67)

Continuity at node (2) implies that

Q̂wa = Q̂wb + Q̂wc. (9.68)

Combining Eqs. (9.59), (9.60), (9.66), and (9.68) yields

dP̂2

dt
=

(

−k2

k3

)

P̂2 +
(

−k1

k3

)

x̂1. (9.69)

Rearranging Eq. (9.69), we obtain

dP̂2

dt
+

(

k2

k3

)

P̂2 =
(

−k1

k3

)

x̂1. (9.70)

Solving Eq. (9.65) for P̂2 in terms of x̂2 yields

P̂2 =
(

ks

Ap

)

x̂2. (9.71)

9.6. Synopsis 243

D/50

k1APD

50k2ks

−

t = k3/k2
t

t

(x̂2)ss

x̂1

x̂2

Figure 9.19. Linearized response of bellows
in Example 9.4.

(d) Combining Eqs. (9.70) and (9.71) yields

dx̂2

dt
+

(

k2

k3

)

x̂2 =
(

−Apk1

ksk3

)

x̂1. (9.72)

The input is

x̂1(t) =

⎧

⎨

⎩

0, for t < 0
D

50
, for t > 0

.

The initial condition for the output is x̂2(0) = 0.

The system time constant � = k3/k2,

(x̂2)ss =
−k1 Ap D

50k2ks

, (9.73)

x̂2(t) =
(

−k1 Ap D

50k2ks

)

(1 − e−t/�). (9.74)

The step change in x̂1 and the system’s response are plotted in Fig. 9.19.

9.6 SYNOPSIS

The basic fluid system elements were described and shown to be analogs of their cor-

responding mechanical and electrical A-, T-, and D-type elements: fluid capacitors,

fluid inertors, and fluid resistors, respectively. Here, the A variable is pressure and the

T variable is volume flow rate. The interconnecting laws of continuity and compat-

ibility needed for dealing with systems of fluid elements correspond to Kirchhoff’s

current and voltage laws used in electrical system analysis.

When the working fluid is a liquid (or sometimes a slightly compressed gas),

the system usually is referred to as a hydraulic system. When the working fluid is a

gas, such as air, that undergoes large pressure changes and/or flows with velocities

having Mach numbers greater than about 0.2, the system usually is referred to as

a pneumatic system. Analysis of pneumatic systems requires modification of the

244 Fluid Systems

describing equations so that the T variable is mass rate of flow instead of volume rate

of flow.

Both linear and nonlinear fluid resistors were introduced, with emphasis on

orifice characteristics. For pneumatic orifice flow, the flow rate is a function of the

ratio of upstream and downstream absolute pressures, whereas the hydraulic orifice

flow relation expresses the flow rate as a function of the difference between the

upstream and downstream pressures.

Examples were included to demonstrate the techniques of modeling and analysis

for both hydraulic and pneumatic systems including an electrohydraulic servoactu-

ator. Because many systems that use working fluids also incorporate mechanical,

electrical, or both, devices, other examples of fluid system analysis will appear in

later chapters.

Fluid system components often offer significant advantages over other types of

system components, such as speed of response, survivability in difficult environments,

safety in hazardous environments, ease of use and/or maintenance, etc.

PROBLEMS

9.1 (a) Develop the system differential equation relating P2r to Ps for the first-order

low-pass hydraulic filter shown in Fig. P9.1(a).

(b) Write the expression for the system time constant and sketch the response, P2r (t) vs.

t, for a step change �Ps from an initial value Ps(0), which has been constant for a

very long time [Fig. P9.1(b)].

P1 P2

QC Pr

R1 R2

Pr

Ps(t)

Cf

Sump

+

Figure P9.1(a). First-order low-pass hydraulic filter.

Ps(t)

P(0)

∆Ps

t

Figure P9.1(b). Input graph.

9.2 (a) Develop the system differential equation relating P3r to Ps for the second-order

low-pass hydraulic filter shown in Fig. P9.2(a).

Problems 9.2–9.3 245

(b) Find expressions for the natural frequency �n and damping ratio � , and sketch the

response versus time for a step change �Ps from an initial value Ps(0), which has

been constant for a very long period of time, assuming that � = 0.3. Show clearly the

period of the oscillation, the per-cycle DR, and the final steady-state value of P3r in

Fig. P9.2(b).

Ps(t)

(a)

Sump

I

(b)

Ps(0)

∆Ps

t

P1 P2
P3

QC Pr

R1 R2

Pr

+

Ps(t)

Cf

Figure P9.2. (a) Second-order low-pass hydraulic filter, (b) input graph.

9.3 The fluid system modeled in Fig. P9.3 represents the process of filling a remote tank

or reservoir in a batch process at a chemical plant.

Fluid provided by an ideal pressure source Ps is suddenly turned on or off by a rotary

valve that offers very little resistance to flow when it is open. The long line connecting

the tank to the shutoff valve has an internal diameter of 2.0 cm and a length of 50 m. The

reservoir has an inside diameter of 25 cm.

In analyzing the response of this system to sudden opening of the valve, it has been

proposed that the line be modeled as a lumped resistance in series with a lumped inertance,

as shown.

(a) Find the estimated lumped resistance Rf, the lumped inertance I, and the lumped

capacitance Cf for the line and the capacitance Ct of the reservoir. Assume laminar

flow in the line. The fluid has viscosity 	 = 1.03 × 10−2 N s/m2, weight density � =
8.74 × 10−3 N/m3, and bulk modulus of elasticity � = 1.38 × 109 N/m2.

(b) Write the necessary and sufficient set of describing equations for this system based

on the Rf − I model of the line for the time starting with t = 0 when the valve is

suddenly opened.

246 Fluid Systems

(c) Develop the system differential equation for the case in which P3r is the output.

(d) Calculate the natural frequency and damping ratio for this model, using pertinent

values found in part (a).

(e) How do you feel about the decision to neglect the lumped capacitance, evaluated in

part (a), in modeling this system?

P1

Ps = constant

Shutoff

valve

+

P2 P3

At = tank area

Pr

Rf I

Pr

Figure P9.3. Reservoir filling system.

9.4 A variable flow source Qs(t) is being used to replenish a reservoir that in turn supplies

an orifice, as shown in Fig. P9.4(a).

P1

H Pr

A1 = tank area

Ao, orifice area

Q0

Qs(t)

Qs(t)

(a)

(b)

t

ΔQs

Qs(0)

Figure P9.4. (a) Reservoir and discharge orifice replenished by flow source, (b) input graph.

Problems 9.4–9.6 247

(a) Write the necessary and sufficient set of describing equations for this system.

(b) Linearize and combine to develop the system differential equation relating Ĥ to

Q̂s(t).

(c) Using only symbols, solve to find and plot the response of Ĥ to a small step change

�Qs from an initial value Qs(0), which has been constant for a very long time.

9.5 Two tanks are connected by a fluid line and a shutoff valve, as shown in Fig. P9.5.

The valve resistance is negligible when it is fully open.

(a) Write the necessary and sufficient set of describing equations for this system.

(b) Combine to form the system differential equation needed to solve for finding P2r in

response to suddenly opening the valve at t = 0 when H1(0) is greater than H2(0).

Note that the input here is a sudden change in the system and that both initial

conditions are needed in combining the describing equations.

Pr

H1

A1

Pr

P2

Gravity

Q
Shutoff

valve

Rf, fluid

resistance

of line

P1

A2

H2

Figure P9.5. Two interconnected tanks.

9.6 The pneumatic system shown schematically in Fig. P9.6 is a model of the air supply

system for a large factory. The air compressor with its own on–off controller delivers

air on a cyclic basis to the large receiving tank, where the compressed air is stored at a

somewhat time-varying pressure P1. From this receiving tank, the air flows through an

orifice having area Ao1 to a ballast tank that acts, together with Ao1, as a pressure filter to

provide an output pressure P2 having much smaller cyclic variations than the fluctuations

in P1 caused by the on–off flow Qws from the compressor. The object of this problem is to

develop the mathematical model needed to compare the predicted variations of P2 with

the variations in P1.

Qws

Qws

Qw1

Ao1

Qw2

(1)

(2)

P1, Tatm

Vr, receiving

tank volume

Patm, Tatm

P2, Tatm

Patm

Ao2

Vb, ballast

tank volume

Qwb

Figure P9.6. Schematic diagram of factory air supply system model.

248 Fluid Systems

The second orifice, with area Ao2 and exhausting to the atmosphere, is provided to

simulate the load effects of all the air-consuming devices and processes in the factory,

and the value of Ao2 is chosen to simulate the normal operating (that is, average) factory

consumption rate of flow of air, Qw2 = 0.05 N/s (0.0051 kg/s) when the normal operating

pressure P2 is 5.0 × 105 N/m2 absolute.

(a) Compute the value of Ao2 needed for the given desired normal operating-point

conditions.

(b) Write the necessary and sufficient set of describing equations for this system, con-

sidering the compressor flow rate Qws(t) as the system input.

(c) Linearize the equations in part (b) and form the set of state-variable equations having

P̂1 and P̂2 as the system state variables.

(d) Develop the system input–output differential equation relating P̂2(t) to Q̂ws(t) and

do the same for relating P̂1(t) to Q̂ws(t).

9.7 A common problem in household plumbing is the waterhammer in which transient

pressure waves cause noisy vibrations in the pipes when a valve is suddenly turned off.

The effects of a waterhammer can be greatly mitigated by the appropriate placement of

a fluid capacitance near the valve. Figure P9.7 shows a conceptual model that can be used

for understanding this phenomenon.

(a) Develop the second-order state-space model that describes this system. Compute the

values of the fluid inertance assuming the pipe is 3 m long and 0.03 mm in diameter

and the fluid is water at room temperature. Assume that the valve behaves like a

sharp-edged orifice in turbulent flow.

(b) Linearize the equations of part (a) about a nominal pressure of Ps and a valve orifice

opening of 0.005-m diameter. Use these linearized equations to predict the pressure

response for a rapid closing of the valve (assume the area changes in a step-wise

fashion).

Ps

P1

ValveQp

C
I

Figure P9.7.

9.8 As stated in the previous problem, a waterhammer is a potentially destructive phe-

nomenon that arises from the sudden closing of a valve. In Problem 9.7, a linearized

approach was used to predict the response. Now a computer simulation is used. Use the

nonlinear equations derived in Problem 9.7(a) and develop a computer simulation of the

system. Use a step-input block to model the sudden change in orifice area. Compare your

results with the answer in Problem 9.7(b).

9.9 Further modify the simulation of the waterhammer (see Problems 9.7 and 9.8) with

a better model of the long pipe. Break the pipe up into six segments, with each having its

own inertance and capacitance. Compare the results you find for this simulation with the

answers to Problems 9.7(b) and 9.8.

10

Mixed Systems

LEARNING OBJECTIVES FOR THIS CHAPTER

10–1 To integrate knowledge of mechanical, electrical, thermal, and fluid systems to

model physical systems made up of more than one type of element.

10–2 To model coupling transducers as ideal and nonideal devices.

10–3 To use state or input–output models to analyze performance of translational–

rotational mechanical, electromechanical, and fluid mechanical systems.

10.1 INTRODUCTION

In previous chapters, various types of systems were discussed, each within its own

discipline: mechanical, electrical, thermal, and fluid. However, many engineering sys-

tems consist of combinations of these elementary single-discipline system elements:

electromechanical, fluid mechanical, and so on. To combine single-discipline systems,

it is necessary to use coupling devices that convert one kind of energy or signal to

another: mechanical to electrical, fluid to mechanical, and so on.

The general term “transducer” will be used here for ideal coupling devices. In

cases in which significant amounts of energy or power are involved, these coupling

devices will be referred to as energy-converting transducers; when the amount of

energy being transferred is minimal, they will be referred to as signal-converting

transducers.

Selected nonideal energy convertors, which are modeled graphically, are also

discussed in terms of typical characteristic curves that have been derived from per-

formance tests.

10.2 ENERGY-CONVERTING TRANSDUCERS AND DEVICES

The energy-converting transducers introduced here are ideal in that they are lossless

models that contain no energy-storage or energy-dissipation elements. When energy

storage or energy dissipation is present, these effects are modeled with lumped ideal

elements connected at the terminals of the ideal transducer.

10.2.1 Translational–Mechanical to Rotational–Mechanical Transducers

The symbolic diagram for mechanisms that convert translational motion to rotational

motion or vice versa is shown in Fig. 10.1, where n is the coupling coefficient relating

output motion to input motion.

249

250 Mixed Systems

Ft

Tt

v

n

Ω

Figure 10.1. Symbolic diagram for an ideal translational-
to-rotational transducer.

The elemental equations for the transducer are

� = nv, (10.1)

nTt = Ft. (10.2)

For the device shown, the flow of power is from left to right when the product of

vFt (and the product of �Tt) is positive, that is, whenever the through and across

variables are of the same sign.

Pulley-and-cable systems, lever-and-shaft mechanisms, and rack-and-gear mech-

anisms are examples of translational-to-rotational transducers.

10.2.2 Electromechanical Energy Converters

In electromechanical systems, the coupling between mechanical and electrical ele-

ments of the system is provided through a magnetic field. Two processes, studied

in introductory physics courses, are essential in establishing the coupling. The first

process involves a current-carrying wire placed within a magnetic field. Force Fe is

exerted on the wire and the differential of the force is

dFe = i(dl × B), (10.3)

where i is the current in the wire, dl is the differential length of the wire, and B is the

flux density of the magnetic field. It should be noted that Fe, l , and B are vectors and

the symbol × denotes the vector cross product. In many applications, the wire-length

vector is perpendicular to the magnetic-field flux vector, and in such cases Eq. (10.3)

can be replaced with the following scalar equation:

Fe = ilB, (10.4)

where the direction of force Fe is determined by the right-hand rule.

The other process responsible for magnetic coupling involves a wire moving

within a magnetic field. Voltage em is induced in the wire, and the voltage differential

is

dem = (v × B) · dl, (10.5)

10.2. Energy-Converting Transducers and Devices 251

Ft

(1)

(2)

it

αt

ei

v

Tt

(1)

(2)

it

αr

ei

Ω
Translational

E-M

transducer

Rotational

E-M

transducer

 = αt ei

itFt =
1
αt

ei it = Ft

Pelect. = Pmech.

(a)

Ω = αr ei

itTt =
1
αr

it ei = Ω Tt

Pelect. = Pmech.

(b)

v

v

Figure 10.2. Symbolic diagrams with elemental equations for ideal electromechanical transducers:
(a) translational–mechanical and (b) rotational–mechanical.

where v is the velocity vector of the wire and the dot denotes the scalar product.

Again, in most applications, the three vectors v, B, and l are mutually perpendicular,

and Eq. (10.5) simplifies to

em = vBl. (10.6)

Equations (10.4) and (10.6) will be used in Example 10.2 to derive the mathematical

model of a dc motor.

The symbolic diagrams used here for ideal energy-converting transducers are

shown in Fig. 10.2 for the case of translational–mechanical motion [Fig. 10.2(a)] and

for the case of rotational–mechanical motion [Fig. 10.2(b)]. The elemental equa-

tions are also given in Fig. 10.2. Because the coupling coefficient � is in many cases

controllable, which is a feature that makes electromechanical transducers especially

attractive for control systems use, it is shown as an input signal.

The translational version is an ideal solenoid. The direction of power flow for

the device as shown [Fig. 10.2(a)] is from left to right when e12it is positive.

The rotational version is an ideal electric motor or an ideal electric generator,

depending on the usual direction of power flow. The device as shown [Fig. 10.2(b)]

operates as a motor when e12it is positive and as a generator when e12it is negative.

A device that usually operates as a motor may temporarily operate as a generator

when system transients occur, and vice versa.

Although these models are intended primarily for use with dc devices, they apply

reasonably well to the same devices operating on ac as long as rms values of voltage

and current are used and the dynamic response of the rest of the system is slow

compared with the periodic variation of the ac.

AC induction motors of the squirrel-cage type operate well only at speeds close

to their no-load speed, which is synchronous with the ac frequency and is usually

constant. A typical torque-versus-speed characteristic of such a motor, operating

with constant supply voltage, is shown in Fig. 10.3. This characteristic includes the

effects of bearing friction and windage loss in the fluid surrounding the rotating

members, as well as resistance and inductance in the windings, so it is not an ideal

252 Mixed Systems

T

Ω

Ω

(1)
i

(2)

Synchronous speed

Normal

operating

range

T

ac motor

Figure 10.3. Steady-state torque-versus-speed characteristic for a squirrel-cage ac motor operating
at constant supply frequency and voltage.

lossless model. Thus it is necessary to know how the efficiency varies with load in

order to determine the input current. When the efficiency is known, the input current,

when the unit is operating as a motor, is given by

irms =
1

�m

·
T�

eirms

, (10.7)

where �m is the efficiency of the unit operating as a motor.

10.2.3 Fluid Mechanical Energy Converters

The symbolic diagrams to be used here for ideal energy-converting transducers are

shown in Fig. 10.4 for the case of translational–mechanical motion [Fig. 10.4(a)] and

the case of rotational–mechanical motion [Fig. 10.4(b)]. The elemental equations are

also given in Fig. 10.4. The coupling coefficient D is shown as an input signal for both

cases, although it is not controllable for the case of translational motion.

The translational version is a fluid cylinder with reciprocating piston, which

may operate in pump or motor fashion, depending on the direction of power flow.

The power flow is from left to right when P12Qt, is positive for the device shown

[Fig. 10.4(a)].

Ft

P1

P2

P1

P2

Dt Dr
Qt Qt

v

Tt

Ω
Translational

F-M

transducer

Rotational

F-M

transducer

Ft = Dt P12

Qt = 1
Dt

P12 Qt = v Ft

Pfluid = Pmech.

(a)

Tt = Dr P12

QtΩ = 1
Dr

P12 Qt = Ω Tt

Pfluid = Pmech.

(b)

v

Figure 10.4. Symbolic diagrams for ideal fluid mechanical energy-converting transducers: (a) trans-
lational and (b) rotational.

10.2. Energy-Converting Transducers and Devices 253

The rotational version is an ideal positive-displacement fluid motor or an ideal

fluid pump, depending on the usual direction of power flow. The device as shown

[Fig. 10.4(b)] operates as a fluid motor when P12Qt is positive and as a fluid pump

when P12Qt is negative. A device that usually operates as a pump may temporarily

operate as a motor when system transients occur, and vice versa.

The coupling coefficient D is the ideal volume displaced per unit motion of the

output shaft (i.e., no leakage occurring) for both the rotational and translational

cases.

These models are valid only when the compressibility of the fluid used is negligi-

ble, so that the volume rate of flow of fluid entering the transducer is the same as the

volume rate of flow leaving it. Because the action of the fluid on the moving members

is by means of static fluid pressure alone (i.e., momentum transfer is negligible), these

devices are sometimes referred to as hydrostatic energy converters.

Hydrokinetic energy converters, such as centrifugal pumps and turbines, do

involve momentum interchange between the moving fluid and moving blades and the

fixed walls. These devices are modeled graphically through the use of experimentally

derived characteristic curves rather than by means of ideal transducers (similar to

the modeling shown for squirrel-cage ac motors). Thus these models are not lossless,

and it is necessary to know how their efficiency varies with operating conditions.

The symbolic diagram and typical characteristic curves for a centrifugal pump

operating at a series of constant speeds are shown in Fig. 10.5. The pump torque is

given by

Tp =
1

�p
·

P34 Qp

�
, (10.8)

where �p is the pump efficiency.

The symbolic diagram and characteristic curves for operation of a hydraulic

turbine at a series of constant pressure drops are shown in Fig. 10.6. The turbine flow

rate is given by

Qt =
1

�t
·
�Tt

P12
, (10.9)

where �t is the turbine efficiency.

P3

P34

Qp

Qp

Ω
Ω = constant for each curve

Tp CP

P4

Figure 10.5. Symbolic diagram and characteristic curves for a centrifugal pump.

254 Mixed Systems

P1Qt

Tt

Ω

Ω

P12 = constant for each curve

TtHT

P2

Figure 10.6. Symbolic diagram and typical characteristic curves for a hydraulic turbine.

Linearization of these characteristics for small perturbations about a set of nor-

mal operating conditions is readily accomplished by use of the techniques discussed

in Chap. 2.

10.3 SIGNAL-CONVERTING TRANSDUCERS

Signal-converting transducers in some cases are simply energy-converting transduc-

ers that have negligible load—for instance, a tachometer generator operating into

a very high-resistance load. In other cases they are specially designed devices or

systems that convert one type of signal to another—for instance, a flyweight speed

sensor or a Bourdon gauge pressure sensor. Still another example is the use of a resis-

tance potentiometer, supplied with a constant voltage, to deliver an output wiper-arm

signal that is a function of its wiper-arm position.

A partial list of signal-converting transducers is given in the small table.

� Tachometer generator � Flyweight speed sensor
� Centrifugal pump speed sensor � Linear velocity sensor
� Linear variable-differential transformer

position sensor

� Thermistor temperature sensor
� Variable-capacitor proximity sensor

� Variable-reluctance pressure sensor � Piezoelectric force sensor

The potential user is referred to a wide range of technical bulletins and specifications

prepared by the manufacturers of such equipment. Several texts are currently in print

on this topic.1

The ideal signal-converting transducers are controlled sources, shown symboli-

cally in Fig. 10.7 together with their describing equations. Figure 10.7(a) shows a con-

trolled A-variable-type transducer, and Fig. 10.7(b) shows a controlled T-variable-

type transducer.

The input variable x denotes the variable being sensed, and es (or Ps or vs or Ts)

denotes the output of an A-variable-type transducer. For T-variable-type transduc-

ers, is (or Qs or Fs or Qhs) denotes the output.

1 As a starting point, consider A. J. Wheeler and A. R. Ganji, Introduction to Engineering Experimenta-

tion, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 2004), or E. O. Doeblin, Measurement Systems, 5th

ed. (McGraw-Hill, New York, 2004).

10.4. Application Examples 255

i

(1)

(2)

+
es

e12 = es = Ctx

Ctx

i

(1)

(2)

is

i = is = Ctx

Ctx

(b)(a)

Figure 10.7. Symbols for signal-converting transducers.

10.4 APPLICATION EXAMPLES

EXAMPLE 10.1

The rack-and-pinion system shown in Fig. 10.8 is to be modeled as part of a large system,

which is to be simulated on a digital computer. The object here is to set up the state-

variable equation(s) for this subsystem, considering Ts and Fs as the system inputs and v

as the system output.

Ts (input 1)

Ω

mJp

Fs (input 2)

υ

Rack mass

b, rack damping

r

Figure 10.8. Rack-and-pinion system, including pinion inertia, rack mass, and friction.

SOLUTION

The detailed symbolic free-body diagram for this system is shown in Fig. 10.9.

The elemental equations are as follows: For the pinion inertia,

Ts − Tt = Jp
d�

dt
. (10.10)

For the transducer,

� = nv, (10.11)

Tt = (1/n)Ft, (10.12)

where n = 1/r. For the rack mass,

Ft − Fb − Fs = m
dv

dt
. (10.13)

256 Mixed Systems

Tt

Ft

Fs

Fb

n = 1/r

Ts

Jp

Input 1

Input 2

Output

Ω

Ω

m

b

υ
υ

υ

Figure 10.9. Detailed symbolic free-body diagram of rack-and-pinion system.

For the rack friction,

Fb = bv. (10.14)

Combine Eqs. (10.10), (10.11), and (10.12) to eliminate Tt and �:

Ts −
1

n
Ft = nJp

dv

dt
. (10.15)

Combine Eqs. (10.13) and (10.14) to eliminate Fb:

Ft − bv − Fs = m
dv

dt
. (10.16)

Combine Eqs. (10.15) and (10.16) to eliminate Ft:

Ts −
1

n

(

m
dv

dt
+ bv + Fs

)

= nJp
dv

dt
. (10.17)

Rearranging yields a single state-variable equation:

dv

dt
=

1

n2 Jp + m
(−bv + nTs − Fs) . (10.18)

Note that the inertia from the rotational part of the system becomes an equivalent mass

equal to n2Jp; thus, although this system has two energy-storage elements, they are cou-

pled by the transducer so that they behave together as a single energy-storage element.

Therefore only one state-variable equation is required for describing this system.

The multiplication of a system parameter of one domain by the square of the

transducer constant to produce an equivalent parameter in the other domain will be

seen to occur consistently in all mixed-system analyses.

10.4. Application Examples 257

EXAMPLE 10.2

A permanent magnet dc motor is being used to drive a mechanical load consisting of a

load inertia Jl and load damping Bl as shown in Fig. 10.10. Develop the system differential

input–output equation relating the output speed � to the input voltage ei.

Ω
Permanent

magnet

dc motor
Jl

B1

ei
+

Figure 10.10. Schematic diagram of dc-motor-driven mechanical system.

SOLUTION

A simplified schematic of the dc motor is shown in Fig. 10.11. The armature winding (only

one turn of the winding is shown in Fig. 10.11) is placed within a uniform magnetic field of

flux density B. The resistance of the winding is R and its inductance is L. When the input

voltage ei is applied, current i flows in the armature winding. Under these conditions (a

current-carrying conductor within a magnetic field), force Fe is exerted on both the top

and the bottom sections of the armature winding as illustrated in Fig. 10.11. The force Fe

is given by Eq. (10.4),

Fe = ilB,

i

ei

R

+

−

L

Fe
Bm

B

Ω

Fe

r

N

S

1

Armature

winding

Figure 10.11. Simplified schematic of a dc motor.

258 Mixed Systems

where l is the length of the armature coil. Because the winding is free to rotate around

its longitudinal axis, force Fe produces a torque:

Te = Fer. (10.19)

This torque acts on each (top and bottom) section of each turn in the armature winding.

Assuming that there are N turns in the winding and they are all within the uniform

magnetic field, the total induced torque exerted on the armature winding is

Te = 2NFer. (10.20)

When Eq. (10.20) is compared with the equation for a rotational–electromechanical trans-

ducer given in Fig. 10.2, the coupling coefficient for the dc motor can be identified as

�r =
1

2NlBr
, (10.21)

and hence the electrically induced torque can be expressed as

Te =
1

�r
i. (10.22)

When the armature winding starts to rotate within a uniform magnetic field, voltage em

is induced in the winding, given by Eq. (10.6):

em = vBl.

Replacing translational velocity v with the rotational velocity � times radius r and

accounting for N turns and two sections of each turn in the armature winding, one finds

that the total voltage induced is

em = 2N�rBl (10.23)

or

em =
1

�r
�, (10.24)

where �r is the coupling coefficient defined by Eq. (10.21). Equations (10.22) and (10.24)

describe mathematically the coupling between mechanical and electrical parts of the

system and are often called the coupling equations.

To derive the system equations of motion, use the detailed symbolic circuit and free-

body diagram shown in Fig. 10.12.

The equation for the electrical part of the system is

ei = Rit + L
dit

dt
+ e12, (10.25)

it

Tt

Ω
Output

Ω
Rotational

E-M

transducer(2)

(1)
Jm + Jl

Bm + B1

LR

ei
+

Figure 10.12. Detailed symbolic diagram of a motor-driven system.

10.4. Application Examples 259

where e12 is the induced voltage given by Eq. (10.24). Hence the equation for the electrical

part can be written as

ei = Rit + L
dit

dt
+

1

�r
�. (10.26)

For the mechanical part of the system,

(Jm + Jl)
d�

dt
+ (Bm + Bl)� = Tt, (10.27)

or, when Eq. (10.22) is used,

(Jm + Jl)
d�

dt
+ (Bm + Bl)� =

1

�r
it. (10.28)

Equations (10.26) and (10.28) constitute the set of basic equations of motion for the

system and can be easily transformed into the state-variable equations by use of it and

� as the state variables. The objective in this example is to derive the input–output

equation relating � to ei . One can accomplish this by combining Eqs. (10.26) and (10.28)

to eliminate it. From Eq. (10.28), current it is

it = �r(Jm + Jl)
d�

dt
+ �r(Bm + Bl)�. (10.29)

Differentiating both sides of this equation gives

dit

dt
= �r(Jm + Jl)

d2�

dt2
+ �r(Bm + Bl)

d�

dt
. (10.30)

Substituting the expressions for it and di/dt into Eq. (10.26) yields

ei = R�r(Jm + Jl)
d�

dt
+ R�r(Bm + Bl)� + L�r(Jm + Jl)

d2�

dt2

+ L�r(Bm + Bl)
d�

dt
+

1

�r
�. (10.31)

Multiplying both sides by �r and collecting terms gives the system input–output equation:

(Jm + Jl)�2
r L

d2�

dt2
+ [(Bm + Bl)�2

r L+ (Jm + Jl)�2
r R]

d�

dt
+ [(Bm + Bl)�2

r R + 1]� = �rei. (10.32)

In Example 10.2, the inductor L is transformed into an equivalent spring 1/�2
r L,

and the resistor R is transformed into an equivalent damper 1/�2
r Ron the mechanical

side of the system. Because the two inertias are connected to each other by a rigid

shaft, they become lumped together as a single energy-storage element, and the

system is only a second-order system.

EXAMPLE 10.3

A variable-displacement hydraulic motor supplied with a constant flow source is used to

vary the output speed of an inertia-damper load, as shown in Fig. 10.13. The displacement

of the motor Dm is proportional to the stroke lever angle � , and the motor has leakage

resistance Rf, rotor inertia Jm, and bearing and windage friction Bm. The load torque Tl is

a second input to the system, in addition to the motor stroke � . Develop the state-variable

equation(s) for this system.

260 Mixed Systems

Tl

Bl

Jl

Output

Ω

ψ

Hyd. motor

• P1

• P2

Qs

Pr

Figure 10.13. Schematic diagram of variable-displacement motor speed control system.

SOLUTION

The detailed symbolic diagram for this system is shown in Fig. 10.14. The elemental

equations are as follows: For the leakage resistor,

QR = Qs − Qt =
1

Rf
P12. (10.33)

For the transducer,

Tt = C1� P12, (10.34)

� =
1

C1�
· Qt. (10.35)

For the inertias and dampers,

Tt − Tl = (Jm + Jl)
d�

dt
+ (Bm + Bl)�. (10.36)

Combining Eqs. (10.33), (10.34), and (10.36) and multiplying all terms by RfCl yields

Tt = C1� Rf Qs − (C1�)2 Rf�. (10.37)

Ω Ω

Qt

Rotational

F-M

transducer

QR

Qs

Rf

P1 •

Pr

• P2 = Pr

Dr = C1ψ

Tt T1

B1+Bm

Jm+J1

Figure 10.14. Detailed symbolic diagram for hydraulic-motor-controlled system.

Problem 10.1 261

Combine Eqs. (10.36) and (10.37) to eliminate Tt:

C1� Rf Qs − (C1�)2 Rf� − T1 = (Jm + J1)
d�

dt
+ (Bm + Bl)�. (10.38)

Divide all terms by (Jm + Jl) and rearrange into state-variable format:

d�

dt
= −

Bm + Bl + (C1�)2 Rf

Jm + Jl
� +

C1� Rf

Jm + Jl
Qs −

1

Jm + Jl
Tl. (10.39)

In this example, the fluid resistor Rf is transformed into an equivalent

displacement-referenced damper (C1�)2Rf on the mechanical side of the system.

10.5 SYNOPSIS

In this chapter, several types of ideal transducers were used to model the coupling

devices that interconnect one type of system with another type of system, resulting

in what is called a mixed system. In this modeling of coupling devices, nonideal char-

acteristics were described by the careful addition of A-, T-, or D-type elements to the

ideal transducer. For the cases in which the use of an ideal transducer is not feasible

(for instance, ac machinery or hydrokinetic machinery), graphical performance data

were used to describe the characteristics of the coupling device as a function of two

variables by use of families of curves.

Detailed examples were provided to illustrate the techniques of modeling and

analysis associated with the design and development of mixed systems. The trans-

formation of the characteristics of an element on one side of an ideal transducer

to an equivalent coupling-coefficient-referenced element on the other side of the

transducer was illustrated. The use of state-variable equations in system modeling

was reiterated, and in each case input–output differential equations ready for use in

analytical solution or computer simulation studies were also provided.

PROBLEMS

10.1 A rack-and-pinion mechanism has been proposed as a means of using a dc motor

to control the motion of the moving carriage of a machine tool, as shown schematically

in Fig. P10.1(a).

The ideal current source is(t) is capable of delivering the current is to the motor

regardless of the voltage e21 required. The nonlinear friction in the rack-and-pinion mech-

anism has been lumped into the single nonlinear friction force FNLD versus velocity v2

characteristic shown in Fig. P10.1(b).

(a) Draw a complete free-body diagram of the system showing the ideal inertialess motor,

the motor inertia Jm, the motor damper Bm, the shaft spring K, the shaft torque Ts,

the gear inertia Jg, the ideal rotational-to-translational transducer, the lumped bar

and carriage mass (mb + mc), and the NLD. The speed at the motor end of the shaft

is �1.

(b) Using only symbols, write the necessary and sufficient set of describing equations for

this system.

262 Mixed Systems

r

(1)

(2)

is(t)

Ω1

Compliant shaft

K = 8500 N m/rad

Jg = 0.0025

 kg m2

mc

mc = 60.0 kg

v2

υ2

Rigid rack bar

mass = mb = 2.0 kg

Nonlinear damping, NLD

DC motor

αr = 1.0 rad/v s

or 1.0 amp/N m

Jm = 0.0075 kg m2

Bm = 0.03 N m s
rad

r = 10.0 cm

b

1

FNLD

+F0

−F0
F0 = 30.0 Ν
 b = 11.0 Ν s/m

(a)

(b)

Figure P10.1. (a) Schematic representation of motor-driven rack-and-pinion, (b) nonlinear friction
characteristic between rack and ground.

(c) Using only symbols, rearrange the equations developed in part (b) to form the set of

nonlinear state-variable equations. Use �1,v2 and Ts as the state variables.

(d) Find the steady operating-point values �1 and v2 when i s = 5 amp.

(e) Using only symbols, linearize the state-variable equations and combine them to

develop the system differential equation relating v̂2 to îs(t).

(f) Find the roots of the characteristic equation and calculate the natural frequency

and damping ratio for the linearized model, using the data given in Fig. P10.1 and

calculated in part (d).

(g) Write the conditional seatements needed to describe the NLD for all possible values

of FNLD.

10.2 The schematic diagram shown in Fig. P10.2(a) represents a model of a small hydro-

electric power plant used to convert water power, diverted from a nearby stream, into dc

electricity for operating a small factory.

You have been given the task of determining the dynamic response characteristics

of this system. The input is the current source is(t), supplied to the field winding of the

generator, which establishes the field strength and therefore the value of the coupling

Problem 10.2 263

(1)

(2)

(5)Ri

Tt

Ωi

Li

is(t)

Ideal transducer

P1•

Pr•

Q Ω1

Jt = turbine rotor inertia

Jg = generator rotor inertia

Bg = generator rotor damping constant

HT

(1) (3)R

L

(2)

is(t) iL

Rigid

shaft

dc generator

αr = Cris (t)

Tailrace

Figure P10.2(a). Schematic diagram of a turbine-driven generator.

coefficient �r of the generator. The output is the voltage e12 with which the generator

delivers power to its electrical load modeled here as a series R-L circuit. (This information

about the system dynamic response will be needed later for designing a voltage controller

that will keep the ouput voltage constant under varying electrical load conditions.)

Previously, one of your colleagues found an appropriate approximate analytical

model for the hydraulic turbine that fitted reasonably well the torque-speed charac-

teristics obtained by a lab technician. The technician’s results are shown graphically in

Fig. P10.2(b); your colleague’s equation is

Tt = T0 −
T0

6

(

1 −
�1

�0

)2

− T0

(

1 −
Pr

P0

)

.

Note that in Fig. P10.2(b) the numerical value of �0 is negative.

Tt

T0 P12 = constant

P12 = P0

Ω1

Ω0

Figure P10.2(b). Steady-state turbine
torque versus speed characteristics at
various constant speeds.

264 Mixed Systems

(a) Draw a free-body diagram of the mechanical part of the system showing the iner-

tialess turbine, the lumped turbine-plus-generator inertia (Jt + Jg), the generator

damper Bg, and the ideal inertialess generator. Also draw the complete electrical cir-

cuit including the ideal generator, the internal resistance Ri, the internal inductance

Li, and the load resistance and inductance R and L.

(b) Write the necessary and sufficient set of describing equations for this system.

(c) Rearrange to form the set of nonlinear state-variable equations using �1 and iL as

the state variables.

(d) Linearize the state-variable equations and provide an output equation for the system

output ê12.

(e) Combine the state-variable equations to form the system differential equation relat-

ing ê12 to the input îs(t).

10.3 In the system shown in Fig. P10.3, a positive-displacement pump is driven by an

armature-controlled dc motor. The coupling equations for the motor and the pump are

included in the figure.

(a) Select state variables and derive a complete set of state-variable equations for the

system.

(b) Draw a simulation block diagram for the system.

(c) Find the calibration formula for the system relating output flow rate, Qo, to the input

voltage, ei , at steady state.

Tm Tp Qp

Qp = DpΩ

Tp = DpP12

P1

K

P2 = const.

Cf

Ra

ia Jm

Bm

La

(g) 1
α

Ω

Ω

(1)

IDEAL PUMP

UNIT

+

ei =

ia = αTm

Qo = k √ P12

+
ei

Figure P10.3. Schematic diagram of the system considered in Problem 10.3.

10.4 A system is being designed that will use a field-controlled dc motor to drive the

spindle of a variable-speed drilling machine. The drive system is shown schematically in

Fig. P10.4. The armature circuit of the motor is driven by a constant voltage source es, and

the circuit is modeled to include a resistor Ra and an inductor La. The field circuit is driven

with a variable input voltage source ef(t), and this circuit is modeled to include a field

resistance Rf and a field inductance Lf. The coupling equations for the induced voltage

(back emf) e3g and the shaft torque Tm are given in Fig. P10.4. The mechanical load that

the motor is driving includes constant torque TL, the inertia of the spindle lumped with

the self-inertia of the motor armature J, and linear viscous friction B, which is due to

bearings.

(a) Formulate the set of state-variable equation for the system, using ia, if, and �l as the

state variables.

Problems 10.4–10.5 265

ef[t]
es

− −

+
+

(1) (2) (3)

Field Coil

Lf

(g)

Rf

Ra La

if

ia

e3g = C1if Ωm

Tm = C1if ia

Ω1

J

TL

Figure P10.4. Field-controlled dc motor.

(b) Determine the normal operating-point values of the state variables for the input

voltage ef(t) = ef = 90 V and the power supply voltage es = 120 V. The values of the

system parameters are as follows:

Ra = 0.5 � La = 4.0 H Rf = 80 �

Lf = 60 H J = 5.0 N m s2/rad B = 0.04 N m s/rad

C1 = 1.2 V s/A rad TL = 30 N m

(c) Develop the linearized state-variable equations for the system.

10.5 Shown in Fig. P10.5 is a simplified schematic of a mass (m)–spring (k)–damper

(b) system with adjustable damping coefficient. The input to the system is voltage ei ,

and the output is position of the mass x. The elements of the electrical circuit are resis-

tor R and a coil placed within a magnetic field and attached to the mass. The induc-

tance of the coil can be ignored in the analysis. When current i flows through the coil,

force Fe acts on the mass, and, when the mass moves, voltage em is induced in the

coil.

(a) Derive the state-variable equations for the system.

(b) Combine the state-variable equations into an input–output equation using voltage

ei as the input and displacement x as the output variable.

(c) Show that the system damping ratio � can be changed by changing resistance R.

In particular, given the system parameters, m = 0.001 kg, b = 0.1 N s/m, k =
10 N/m, and Cm = 2.0 V s/m, find the value of the resistance for which the damping

ratio is 0.7.

266 Mixed Systems

x

R

k

b m

i

+
ei

em = Cmv Fe = Cmi

Figure P10.5. Electromechanical system with adjustable damping.

10.6 A valve-controlled motor is used with a constant pressure source Ps to control the

speed of an inertia J1 having a load torque T1, and linear damper B1 acting on it, as shown

in Fig. P10.6.

P1•

P2

Qc

J1
Qm T1

B1

Ω1

Qv

NLR

Control valve

Cf

A(t)

• Pr

Dr = rotational coupling coefficient

Jm = motor inertia

Bm = motor damping constant

Ps = constant

Sump

Positive-

displacement

hydraulic

motor

+

Rigid shaft

Figure P10.6. Schematic diagram of valve-controlled motor system.

The lumped fluid capacitance Cf arises from the compressibility of the fluid under

pressure between the control valve and the working parts (pistons, vanes, or gears) of the

hydraulic motor. The valve is basically a variable nonlinear fluid resistor in the form of a

variable-area orifice and is described by the equation

Qv = A(t)Cd

(
2

�

)0.5
P12

|P12|0.5
.

Problems 10.6–10.7 267

The shaft is very stiff, so that the motor inertia Jm may be lumped together with the

load inertia J1, and the motor damper Bm may be lumped together with the load damper

B1; leakage in the motor is negligible.

(a) Draw a free-body diagram of the mechanical part of the system showing the iner-

tialess ideal motor shaft, the lumped inertias, the lumped dampers, and the load

torque.

(b) Write the necessary and sufficient set of describing equations for this system.

(c) Rearrange the equations developed in part (b) to form the set of state-variable

equations using P2r and �1 as the state variables.

(d) Linearize and combine the state-variable equations to produce the system differential

equation relating �̂1 to the input Â(t).

10.7 A variable-displacement hydraulic pump, driven at constant speed �1, is being

used in a hydraulic power supply system for a variable-resistance load R1, as shown in

Fig. P10.7.

Sump

ψ(t)

Ω1

Ω1 = constant

Qp

R1(t)

QR1

P1

P1•

PrDrp = C1ψ(t)

Rfp

Var.-disp.

hyd. pump

Air

Oil
Gas-charged

accumulator

Figure P10.7. Schematic diagram of variable-displacement hydraulic power supply.

The displacement of the pump Drp = C1� (t), where � (t) is the pump stroke input

to the system. The internal leakage in the pump is Qlp = (1/Rfp)Plr. The air in the

gas-charged accumulator occupies volume V when the system is at its normal operating

point, and the absolute temperature of the gas is approximately the same as that of the

atmosphere.

(a) Develop the system differential equation relating the pressure Plr to the two inputs

� (t) and Rl(t), using only symbols.

(b) Determine the normal operating-point values �̄ and Q̄p, given the following data:

�1 = 180 rad/s,

Cl = 4.4 in3/rad per stroke rad,

Rl = 40 lb s/in5,

Plr = 1000 lb/in2
,

Rfp = 1200 lb s/in5.

268 Mixed Systems

(c) Linearize the system differential equation for small perturbations of all variables

about the normal operating point and find the system time constant � given the data

that follow (assume “fast” changes of pressure in the accumulator):

V̄ = 300 in3
,

Tatm = 530 ◦ R.

(d) Sketch the response to a small step change:

R̂l(t) = −2 lb s/in5 at t = 0, followed by a small step change,

�̂ (t) = � /20 at t = �/2.

10.8 A variable-speed hydraulic transmission used to drive the spindle of a large turret

lathe is shown schematically, together with constant-speed drive motor and associated

output gearing, in Fig. P10.8(a).

Relief

Valve

P1

ac Motor

Var. – disp.

hydraulic pump

Hydraulic
Motor

Js

n

Ψ(t)

Drp = C1Ψ(t)

Rfp
Ω ΩΩ

Ω

Ω

1 = const.

Qp Qm

Drm, Rfm, Tfm, Jm

3 = − n 2

gear ratio = n:1

Sump

1 2

3

Tl(t)

Figure P10.8(a). Schematic diagram of variable-speed drive system.

The variable-displacement pump has displacement Drp = Cl� (t), and the internal

leakage of the pump is proportional to the pressure Plr modeled by a leakage resistance

Rfp. The fixed-displacement motor has displacement Drm, internal leakage resistance Rfp,

and rotational inertia Jm. The friction torque of the motor versus shaft speed �2g is shown

by the graph in Fig. P10.8(b).

Bm

Tfm

T0
Ω2

1

Figure P10.8(b). Graph of motor friction torque versus
shaft speed.

The relief valve (RV), which acts only if something happens to cause P1r to exceed a

safe operating value, is of no concern in this problem. The combined friction of the gear

and spindle bearings and the friction in the gear train are negligible compared with the

friction in the motor.

The gear inertias are negligible, and the combined inertia of the lathe spindle, chuck,

and workpiece is Js. The torque T1(t) represents the load torque exerted by the cutting

tool on the workpiece being held and driven by the spindle chuck.

Problem 10.8 269

(a) As a starting point, it is assumed that the pressurized line between the pump and

motor can be modeled as a simple fluid capacitor with negligible inertance having

volume V2 = AL+ Vint, where A is the flow area of the line, L is the length of the

line, and Vint is the sum of the internal volumes of the pump and the motor. In other

words, V is the total volume between the pistons in the pump and the pistons in

the motor. From this simplification, prepare a complete system diagram showing all

variables and all the essential ideal elements in schematic/free-body diagram form

(as in the solution for Example 10.3).

(b) For a desired normal operating pressure P̄1r , when the normal operating load torque

is Tl and the normal spindle speed is �3, derive an expression for the motor displace-

ment Dm in terms of Plr, Tl, and �3. Then develop an expression for the normal flow

rate Qm = Qp in terms of �3, Drm, and P1r, and also develop an expression for the

normal operating value of pump displacement Drp = C1� in terms of Qm, P1r, and

�1.

(c) Write the necessary and sufficient set of describing equations for this system, combine

to form the set of state-variable equations having Plr and �2 as state variables, and

write the output equation for �2.

(d) Linearize the state-variable equations and the output equation for small perturba-

tions of all variables.

(e) Using the data that follow, find the damping ratio � and natural frequency �n (or

time constants) for this system using the input–output differential equation relating

�̂3 to �̂ (t):

�l = 190 rad/s,

P1r = 1000 lb/in2,

Rfp = 480 lb s/in5,

Rfm = 520 lb s/in5,

V = 10 in3,

T0 = 30 lb in.,

Bm = 0.65 lb in. s,

Jm = 0.11 lb in. s2,

n = 3,

Js = 6.0 lb in. s2,

T1 = −1500 lb in.,

�3 = −260 rad/s.

Fluid properties:

	 = 0.032 lb/in3

 = 200,000 lb/in2.

(f) Compute the fluid inertance of the hydraulic line using an internal line diameter

of 0.5 in. and a line length of 40 in., and compare its motor-displacement-reflected

effective inertia D2
rm I with the motor inertia Jm and with the gear-ratio-reflected

inertia n2 Js. How do you feel about the tentative decision made in part (a) to neglect

the fluid inertance of the line?

270 Mixed Systems

10.9 The generator–motor arrangement shown in Fig. P10.9(a) is one version of a Ward–

Leonard variable-speed drive used to drive loads at variable speeds and loads, using

power from a constant-speed source �1. This system is similar in many respects to the

hydraulic variable-speed drive studied in Problem 10.5.

Ω1
Ω2

Ω1g =
constant

Rg LmLg Rm

is(t)

(1)

1

(2)

if

i

Tl(t)

Jl

n

Ω3

dc generator

αrg = C1 is(t)

Rg, Lg

dc motor

αrm = C2 if = constant

Rm, Lm, Jm, Tfm

Ω3 = −nΩ2

Gear ratio = n : 1

Figure P10.9(a). Schematic diagram of variable-speed drive system.

The coupling coefficient for the generator is �rg = C1is(t), where is(t) is a system

input and the generator armature winding has resistance Rg and inductance Lg.

The coupling coefficient for the motor is �rm = C2if, which is constant. The motor

armature winding has resistance Rm and inductance Lm. The motor rotor has inertia Jm,

and the motor friction torque as a function of speed is shown in the graph of friction torque

versus speed in Fig. P10.9(b). The combined friction of gear and load inertia bearings and

the friction in the gear train are negligible. The gear inertias are also negligible. The load

inertia is J1. The torque T1(t) represents the external load, which is a second input to the

system.

Bm

Tfm

T0
Ω2

l

Figure P10.9(b). Graph of motor friction torque
versus shaft speed.

(a) It will be assumed that the conductors between the generator and the motor have neg-

ligible resistance, inductance, and capacitance. Prepare a complete system diagram

showing all variables and all the essential ideal elements in schematic circuit/free-

body diagram form (as in Example 10.2).

(b) For a desired normal operating current i when the normal operating load is T1 and the

normal operating speed is �3, derive an expression for the motor coupling coefficient

�rm in terms of i, T1, and �3. Then develop an expression for e12 in terms of �3 , �rm,

and i . Also develop an expression for the normal operating value �rg = C1i s in terms

of e12, ī , and �1.

(c) Write the necessary and sufficient set of describing equations for this system and

combine to form the state-variable equations having i and �2 as the state variables.

Also write the output equation for �3.

(d) Linearize the state-variable equations and the output equation for small perturba-

tions about the normal operating point.

Problems 10.9–10.11 271

(e) Using the data that follow, find the damping ratio � and the natural frequency �n (or

time constants) for this system, using the system input–output differential equation

relating �̂3 to îs(t):

�1 = 190 rad/s,

i = 30 amp,

Rg = 0.5 �,

Rm = 0.5 �,

Lg = 5 h,

Lm = 5 h,

T0 = 10.0 lb in.,

Bm = 0.4 lb in. s,

Jm = 30 lb in. s2,

Jl = 6 lb in. s2,

Tl = −1500 lb in.,

�3 = −260 rad/s,

n = 3.

10.10 Find expressions for the steady–state response of x2 to a small step change in the

input x1(t) and for the damping ratio for the valve-controlled pneumatic system shown in

Fig. P10.10, assuming ks is negligible and F1 is constant. Assume that P2 < 0.45P1, and

use linearized equations for your analysis.

F1(t)m

Patm

ksA01

A02

x20
x2

(r2)Patm

x1(t)

(r1)

P2

P1

Ps = constant

(1)

(2) Ap

D

a a

+
Ps

Figure P10.10. Schematic diagram of pneumatically driven mass and force load.

Using parameters supplied by you or your instructor, calculate the system natural

frequency �n (or time constants) of this system. Note that A02 = �Dx1/2 should be less

than �D2/8—in other words, x1 should be less than D/4 —for the flapper-nozzle valve to

function effectively. Furthermore, A02/A01 must satisfy the desired P2/P1 ratio in order

to proceed with the calculation.

10.11 Find expressions for the steady-state response of �l to a small step change in es

and for the damping ratio for the amplifier-driven dc motor and load system shown in

Fig. P10.11

272 Mixed Systems

+
es(t)

dc motor Tl(t)

Jl

R2

R1 Ω1(1)

(2) (3)

(g)

αrm = constant

Rm, Lm, Jm, Bm

+

op-amp

−

Figure P10.11. Schematic diagram of amplifier-driven motor and load system.

10.12 Consider the system shown in Fig. P10.12(a). The electric motor is connected to

the inertia by means of a rigid shaft. The load torque T1 is an arbitrary input just as is

the voltage em. The rotational damping coefficient is B. The motor characteristics are

given by Fig. P10.12(b). Derive the differential equation that describes the relationship

between the two inputs and the speed of the motor.

Ti

Ω

J

B

(a)

Motor

+
em

−

(b)

em = increasing

em = const

Motor speed Ω

Km

1

Figure P10.12. Motor schematic and characteristic curves.

11

System Transfer Functions

LEARNING OBJECTIVES FOR THIS CHAPTER

11–1 To drive system transfer functions as a compact representation of relationships

between inputs and outputs in linear systems.

11–2 To predict time-domain system behavior by using the system transfer function.

11–3 To apply the concept of the transfer function to systems with multiple inputs,

multiple outputs, or both.

11–4 To develop, manipulate, and interpret system transfer function block diagrams.

11.1 INTRODUCTION

A significant body of theory has been developed for analyzing linear dynamic sys-

tems without having to go through the classical methods of solving the input–output

differential equations for the system. This body of theory involves the use of the

complex variable s = � + j�, sometimes known as a complex frequency variable.

This variable is essentially the same as the Laplace transformation variable s in many

respects, but its use does not need to involve the complex (in both senses of the

word) transformation problems of ensuring convergence of integrals having limits

approaching infinity, nor does it involve the need to carry out the tedious process of

inverse transformation by means of partial fraction expansion and the use of a table

of transformation pairs. Here the variable s is simply considered to be the coefficient

in the exponential input function est, and the transfer function emerges from solving

for the particular or forced part of the response to this input. The notion of transfer

function is then combined with the use of simple input–output block diagrams to

symbolically express the input–output characteristics of the dynamic behavior of the

system.

Because many readers may be familiar with the Laplace transformation (see

Appendix 2), an equivalent approach to the derivation of the system transfer function

based on the Laplace transformation is also presented in this chapter as an alternative

to the approach based on the exponential inputs. It is hoped that, by presenting these

different paths to the same end point, the concept of the transfer function, which is

often a difficult one for engineering students, will be more accessible.

The systems described and analyzed in previous chapters have nearly all incor-

porated naturally occurring feedback effects. The presence of these feedback effects

273

274 System Transfer Functions

 positive

 negative

 = 0

e t

t

σ

σ

σ

σ

Figure 11.1. Variation of e�t with time for dif-
ferent values of �.

is readily observed when a simulation block diagram has been prepared for the sys-

tem. In addition to the natural feedback effects, we will need to deal with intentional,

engineered feedback of the kind used in feedback amplifiers and automatic control

systems. The use of transfer functions and transfer function block diagrams described

in this chapter will prove to be of great value in the analysis of all types of feedback,

or closed-loop, systems, beginning with the next chapter on frequency-response anal-

ysis.

11.2 APPROACH BASED ON SYSTEM RESPONSE TO EXPONENTIAL INPUTS

Consider a family of time-varying functions of the form est, called the exponential

input functions. This form is particularly versatile, exhibiting different characteristics,

depending on whether s = � + j� is real (� = 0), imaginary (� = 0), or complex

(s, � �= 0), as shown in Figs. 11.1 and 11.2.

(a) When both � and � are zero, e�t = 1, representing a constant input with time—as,

for instance, the value of a unit step input for t > 0.

(b) When only � is zero, the input is a growing or decaying real exponential, depend-

ing on whether � is positive or negative, as shown in Fig. 11.1.

(c) When only � is zero, the input is complex, having sinusoidal real and imaginary

parts, and it is represented by a unit vector rotating at speed �t, as shown in

Fig. 11.2.

Examination of Fig. 11.2 readily reveals the basis for the Euler identity

e j�t = cos �t + j sin �t. (11.1)

Im

Re

sin ωt

cos ωt

ωt

e jωt

l

Figure 11.2. Complex plane representation of ej�t.

11.2. Approach Based on System Response to Exponential Inputs 275

Im

Unit circle

1.0 Re

positive

negative

σ

σ

ωt

e(σ+jω)t

σ

= 0

Figure 11.3. Complex plane representation of
e(�+ j�)t .

Here it is seen that the input ej�t can be used to represent either a sine wave or

a cosine wave, or even both, as the occasion demands. As such, ej�t in Eq. (11.1)

is used to represent sinusoidal inputs in general, and ej�t forms the basis for the

frequency-response transfer function that will be developed in Chap. 12.

When neither � nor � is zero, the input is represented on the complex plane by

a rotating vector, which is initially unity at t = 0 and then grows or decays exponen-

tially with time, as shown in Fig. 11.3. This input may be used to represent growing

or decaying sinusoids, the latter often occurring naturally as the output of an under-

damped system responding to its own step input.

For the purposes of this discussion, the homogeneous part of the response of

a stable system is considered of minor interest (it usually dies away soon and, in a

linear system, in no way affects the particular, or forced, part). The forced part of

the response is used here as the basis for developing the notion of a transfer function

that relates the output of a linear system to its input.

Recalling that the particular or forced part of the response is of the same form

as that of the input and/or its derivatives,1 we see that the response to an exponential

input must also be an exponential of the form Cest, where C is an undetermined com-

plex coefficient. As an illustration, consider an nth-order system having the following

input–output differential equation:

an

dn y

dtn
+ an−1

dn−1 y

dtn−1
+ · · · + a1

dy

dt
+ a0 y

= bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · · + b1

du

dt
+ b0u, (11.2)

where the input u and the output y are functions of time and m ≤ n for physically

realizable systems. Now, with u = Uest , the forced part of the output is taken to be

y = Yest , which is then substituted into Eq. (11.2) to yield2

(ansn + · · · + a1s + a0) Yest = (bmsm + · · · + b1s + b0) Uest . (11.3)

1 The additional exponential term Atest is part of the particular integral for the case when s is precisely

equal to one of the system poles. However, this additional term, which represents the mechanism by

which the particular solution may grow with time, is of no direct interest here.
2 Note that the time derivative of the exponential function Cest is sCest.

276 System Transfer Functions

T
01

01

...

...
)(

asasa

bsbsb
s

n

n

m

m

+++
+++

=
U(s) Y(s)

Figure 11.4. Block-diagram representation of the transfer function relating U and Y.

Solving for Y yields

Y =
bmsm + · · · + b1s + b0

ansn + · · · + a1s + a0
U (11.4)

or

Y = T(s)U, (11.5)

where

T(s) =
bmsm + · · · + b1s + b0

ansn + · · · + a1s + a0
. (11.6)

The (until now) undetermined complex output-amplitude coefficient Y is seen to be

a complex coefficient that one readily obtains by multiplying the input-amplitude

coefficient U by the transfer function T(s). With Eq. (11.6) in mind, the system block

diagram shown in Fig. 11.4 can be used to express symbolically the relationship

between the output Y and input U. The similarity to the Laplace transform repre-

sentation for the system with all initial conditions equal to zero, used in the next

section, is obvious. However, the Laplace transformation is not necessary here.

It is important to note that the use of transfer functions to model nonlinear systems

is not valid unless the system has been linearized and the limitations imposed by the

linearization are thoroughly understood.

11.3 APPROACH BASED ON LAPLACE TRANSFORMATION

The transfer function of a linear system can also be derived with the Laplace trans-

formation. For readers who are not familiar with the Laplace transformation or who

need to refresh their knowledge, the material presented in Appendix 2 provides a

brief but sufficient, for the purposes of this chapter, review of the relevant informa-

tion.

Consider again a linear nth-order system with an input signal u(t) and an output

signal y(t), described by Eq. (11.2). Assume that all initial conditions in the system

for time t = 0− are zero, i.e., y(0−) = 0, ẏ(0−) = 0, . . . , y(n−1)(0−) = 0. Taking the

Laplace transform of both sides of the system input–output equation yields

ansnY(s) + · · · + a1sY(s) + a0Y(s) = bmsmU(s) + · · · + b1sU(s) + b0U(s), (11.7)

where m ≤ n and U(s) and Y(s) are the Laplace transforms of u(t) and y(t), respec-

tively. The system transfer function is defined as the ratio of the Laplace transform

11.4. Properties of System Transfer Function 277

of the output signal Y(s) over the Laplace transform of the input signal U(s). From

Eq. (11.7), the system transfer function T(s) is

T (s) =
Y(s)

U(s)
=

bmsm + · · · + b1s + b0

ansn + · · · + a1s + a0
. (11.8)

The expression obtained in Eq. (11.8) is the same as the expression derived based on

the system response to exponential inputs and given by Eq. (11.6). Again, it should

be noted here that, regardless of the approach taken in deriving the transfer function,

it can be applied only to linear or linearized systems.

11.4 PROPERTIES OF SYSTEM TRANSFER FUNCTION

It was shown in the two preceding sections that the transfer function of an nth-order

linear system described by Eq. (11.2) takes the form of a ratio of polynomials in s as

in Eq. (11.8), which can be rewritten as

T(s) =
B(s)

A(s)
, (11.9)

where the two polynomials, A(s) and B(s), are

A(s) = ansn + · · · + a1s + a0, (11.10)

B (s) = bmsm + · · · + b1s + b0. (11.11)

In all existing and realizable engineering systems, the order of the polynomial in the

numerator of the transfer function is not higher than the order of the polynomial in

the denominator, m ≤ n.

The roots of the polynomial B(s), which can be real or complex numbers, are

called zeros of the system transfer function. Another form that B(s) can be presented

in is

B(s) = bm(s − z1)(s − z2) · · · (s − zm), (11.12)

where z1, z2, . . . , zm are the zeros of the transfer function. Note that, for each of the

zeros, the transfer function becomes zero:

T(s)
∣

∣

s=zi
= 0, i = 1, 2, . . . , m. (11.13)

The roots of the polynomial in the denominator of the transfer function, A(s), are

called the poles of the system transfer function. The transfer function of an nth-order

system has n poles, which can be real or complex numbers, and the polynomial A(s)

can be written as

A(s) = an(s − p1)(s − p2) . . . (s − pn), (11.14)

where the poles are solutions of the equation

A(s) = 0, (11.15)

or, equally,

ansn + · · · + a1s + a0 = 0. (11.16)

278 System Transfer Functions

Note that the form of this equation is the same as the form of the characteristic

equation of an nth-order linear system, Eq. (4.7). Therefore the system poles are the

same as the roots of the system characteristic equation. It can thus be implied that the

poles of the system transfer function provide complete information about the inherent

dynamic characteristics of the system. Specifically, each real pole corresponds to a

time constant and each pair of complex-conjugate poles corresponds to a natural

frequency and a damping ratio of the system.

Finally, when Eqs. (11.2) and (11.8) are compared, it can be observed that the term

containing the ith power of s in the denominator of the transfer function corresponds

to the term in the system differential equation involving the ith derivative of the

output, whereas the term containing the jth power of s in the numerator of the transfer

function corresponds to the term in the system differential equation involving the jth

derivative of the input. Thus the system differential equation is readily recovered,

by simple observation, by inspection the numerator and denominator of the system

transfer function.

The practical applications of the properties of the system transfer function pre-

sented in this section are demonstrated in Examples 11.1–11.4.

EXAMPLE 11.1

Derive the transfer function for the electric circuit shown in Fig. 11.5. Use voltage across

the capacitor, eC(t), as the output and the source voltage es(t) as the input signal. Find

poles and zeros of the transfer function.

SOLUTION

The Kirchhoff’s voltage law equation for the circuit is

es = eR + eC.

The equation for the resistor is

eR = Ri.

For the capacitor,

i = C
deC

dt
.

i R

C

+

-

e
s e

C

Figure 11.5. Linear RC circuit.

11.4. Properties of System Transfer Function 279

E
C
(s)E

s
(s)

1
RCS+1

Figure 11.6. Transfer function block diagram of the cir-
cuit considered in Example 11.1 relating voltage across
the capacitor to input voltage.

Combining the three equations gives the differential input–output equation:

RC
deC

dt
+ eC = es .

Assuming zero initial condition, eC(0−) = 0, and taking the Laplace transform of both

sides of the preceding equation yields

RCsEC(s) + EC(s) = Es(s),

where EC(s) and Es(s) are Laplace transforms of eC(t) and es(t), respectively. Hence, the

circuit transfer function is

TC(s) =
EC(s)

Es(s)
=

1

RCs + 1
.

Note that this first-order system has no zeros [B(s) = 1] and one pole, s1 = −1/RC, where

RC is the circuit time constant, � = RC, and thus s1 = −1/� . The transfer function block

diagram for the circuit is shown in Fig. 11.6.

EXAMPLE 11.2

Derive the transfer function for the mass–spring–damper system being acted on by an

input force applied to the mass, as shown in Fig. 11.7. Use force F(t) as the input and the

mass displacement x(t) as the output variable.

SOLUTION

The input–output equation for a linear mass–spring–dashpot system was derived in

Chap. 2, Eq. (2.34):

m
d2x

dt2
+ b

dx

dt
+ kx = F(t).

Assuming zero initial conditions, x(0−) = 0 and ẋ(0−) = 0, and taking the Laplace trans-

form of both sides of the input–output equation yields

ms2X(s) + bsX(s) + kX(s) = F(s);

hence, the system transfer function is

T(s) =
X(s)

F(s)
=

1

ms2 + bs + k
.

m

k

b

F(t)

x(t)

Figure 11.7. Schematic diagram of mass–
spring–damper system.

280 System Transfer Functions

It can be seen that this second-order system has no zeros and two poles, s1 and s2, which

can be found when the system characteristic equation is solved:

ms2 + bs + k = 0.

The poles are easily found by the solution of this quadratic equation:

s1, s2 =
(

−b ±
√

b2 − 4mk
)

/2m.

By use of the damping ratio (see Section 4.4), � = b/(2
√

mk), when � ≥ 1, the poles are

equal to negative inverse time constants,

s1, s2 = −
1

�1
, −

1

�2
,

and, when 0 < � < 1.0, the poles are complex-conjugate numbers related to the system

damping ratio and natural frequency:

s1, s2 = −��n ± j�n

√

1 − � 2,

where

�n =
√

k/m.

The availability of the system transfer function offers an alternative way for

solving for the response of linear systems (an alternative to analytical solutions of

input–output equations or computer solutions of state-variable equations). From the

definition of the transfer function, the Laplace transform of the output signal can be

calculated as

Y(s) = U(s)T(s). (11.17)

One can then find the system response in the time domain by taking the inverse

transform of Y(s) by using partial fraction expansion described in Appendix 2 or by

using MATLAB, which is the topic of Section 11.7:

y(t) = L
−1{Y(s)}. (11.18)

In many situations, it is of practical value to engineers to be able to quickly evaluate

a general character of the system step response rather than to calculate a detailed

and complete response. In such situations, the system transfer function can be used

to evaluate the step response immediately after the input signal is applied, at time

t = 0+, and at steady state for time approaching infinity. Based on the initial-value

theorem (see Appendix 2), the system response at time t = 0+ is

y(0+) = lim
s→∞

sY(s) = lim
s→∞

sU(s)T(s). (11.19)

For a step input of magnitude A, we have

y(0+) = lim
s→∞

s
A

s
T(s) = A lim

s→∞
T(s). (11.20)

Thus the value of the step response at t = 0+ is equal to the limiting value of the

transfer function as s → ∞ multiplied by the magnitude of the step input.

11.4. Properties of System Transfer Function 281

The value of the final value of the steady-state step response can be found with

the final-value theorem (Appendix 2):

yss = lim
t→∞

y(t) = lim
s→0

sY(s) = lim
s→0

sU(s)T(s). (11.21)

For a step input of magnitude A, U(s) = A/s,

yss = A lim
s→0

T(s). (11.22)

According to this equation, the final value of the steady-state step response is the

same as the limit of the value of the system transfer function when s → 0 multiplied

by the magnitude of the step input.

EXAMPLE 11.3

Evaluate the response of the RC circuit considered in Example 11.1 to a step change in

input voltage from 0 to �Es that occurs at time t = 0. Use both eC(t) and eR(t) as the

output variables.

First, consider the voltage drop across the capacitor. The transfer function relating

that voltage to input voltage, derived in Example 11.1, was

TC(s) =
EC(s)

Es(s)
=

1

RCs + 1
.

By use of Eq. (11.20), the value of voltage across the capacitor immediately after the step

change in the source voltage occurs is

eC(0+) = �Es lim
s→∞

1

RCs + 1
= 0 V.

Recall that in Example 11.1 it was assumed that the initial value of eC(t) was zero, eC(0−) =

0. It has just been found that the voltage remains equal to zero at t = 0+, which could

be expected if one considers that the amount of energy stored by the capacitor is related

to eC, and if eC changes suddenly between t = 0− and t = 0+, so would the amount of

energy stored in the system, which is physically impossible.

The final-value theorem finds the value of eC after the transients die out:

lim
t→∞

eC(t) = �Es lim
s→0

1

RCs + 1
= �Es .

Now, consider the voltage drop across resistor R as the output variable. From Kirchhoff’s

voltage law equation we have

eR(t) = es(t) − eC(t).

Assuming that all voltages in this equation are zero at time t = 0− and taking Laplace

transform of both sides yields

ER(s) = Es(s) − EC(s).

Substituting the expression for EC(s) in terms of Es(s) derived in Example 11.1 gives

ER(s) = Es(s) −
1

RCs + 1
Es(s).

282 System Transfer Functions

t

e
C

(t)

eR(t)

0

ΔEs

Figure 11.8. Step responses plots for the RC

circuit shown in Fig. 11.5.

Hence the transfer function relating voltage across the resistor to the input voltage is

TR(s) =
ER(s)

Es(s)
=

RCs

RCs + 1
.

Now that the transfer function has been found, the values of eR at the time immediately

after the change in the input voltage occurred and at steady state can be determined. At

time t = 0+,

eR(0+) = �Es lim
s→∞

TR(s) = �Es lim
s→∞

RCs

RCs + 1
= �Es .

Thus it can be seen that there is a sudden change in the voltage drop across the resistor

from 0 to �Es , but this sudden change is not associated with a sudden change of energy

storage and it may indeed take place in the circuit.

The final-value of the steady-state step response is

lim
t→∞

eR(t) = �Es lim
s→0

RCs

RCs + 1
= 0.

By knowing the values of the voltages in the circuit immediately after the input voltage

changes and at steady state, and recognizing that the circuit is a first-order system with

a time constant � = RC, an engineer can make fairly accurate sketches of the circuit

responses, as shown in Fig. 11.8.

EXAMPLE 11.4

The transfer function of the RLC bandpass filter shown in Fig. 11.9 is

T(s) =
Eo(s)

Ei (s)
=

RCs

LCs2 + RCs + 1
.

Find the differential equation relating output voltage eo(t) to input voltage ei(t).

eoei

C L

R

(g)

Figure 11.9. Schematic of RLC bandpass filter.

11.5. Transfer Functions of Multi-Input, Multi-Output Systems 283

SOLUTION

From the expression for the system transfer function we have

Eo(s)(LCs2 + RCs + 1) = Ei (s)RCs

or

LCs2Eo(s) + RCsEo(s) + Eo(s) = RCsEi (s).

The inverse Laplace transformation of the preceding equation yields the filter’s input–

output differential equation:

LC
d2eo

dt2
+ RC

deo

dt
+ eo = RCei .

11.5 TRANSFER FUNCTIONS OF MULTI-INPUT, MULTI-OUTPUT SYSTEMS

In Example 11.3, the RC circuit was considered as a system with one input, es(t),

and two outputs, eC(t) and eR(t). Two separate transfer functions were derived, each

relating one of the output variables to the common input variable.

The transfer function block diagram of the circuit is shown in Fig. 11.10. In gen-

eral, in a multi-input, multi-output system, a transfer function is identified between

each output and each input signal. In a system with l inputs and p outputs, a total of

l × p transfer functions can be identified. This is illustrated in Fig. 11.11 for a system

with two inputs and two outputs. The output signals are

Y1(s) = U1(s)T11(s) + U2(s)T12(s), (11.23)

Y2(s) = U1(s)T21(s) + U2(s)T22(s). (11.24)

Hence, the four system transfer functions can be defined as follows:

T11(s) =
Y1(s)

U1(s)

∣

∣

∣

∣

U2(s) = 0

, (11.25)

T12(s) =
Y1(s)

U2(s)

∣

∣

∣

∣

U1(s) = 0

, (11.26)

T21(s) =
Y2(s)

U1(s)

∣

∣

∣

∣

U2(s) = 0

, (11.27)

T22(s) =
Y2(s)

U2(s)

∣

∣

∣

∣

U1(s) = 0

. (11.28)

E
c
(s)

E
s
(s)

E
R

(s)

RC

RCs+1
1

RCs+1

RCs

Circuit

Figure 11.10. Transfer function block diagram of the RC circuit with one input and two outputs.

284 System Transfer Functions

T11(s)

T21(s)

T12(s)

T22(s)
+

+

+
+

U1(s)

U2(s)

Y1(s)

Y2(s)

Figure 11.11. Block diagram of a two-input, two-output system.

The general expression for each of the l × p transfer functions of a multi-input,

multi-output system is

Ti j (s) =
Yi (s)

U j (s)

∣

∣

∣

∣

Uk(s) = 0

, (11.29)

where i = 1, 2, . . . , l, j = 1, 2, . . . , p, and k = 1, 2, . . . , j − 1, j + 1, . . . , l.

Expressed verbally, the transfer function for a given pair of output and input sig-

nals is equal to the ratio of the Laplace transform of the output signal over the

Laplace transform of the input signal in the pair, with all other inputs equal to zero.

Note that this assumption, setting all inputs except one to zero, is valid because we

are dealing with linear systems for which the principle of superposition holds.

The following example illustrates the concept of transfer function of a multi-

input, multi-output system. It also demonstrates a simple method for calculating the

component transfer functions from the basic equations of motion derived for the

system.

EXAMPLE 11.5

Derive the transfer functions relating displacements x1(t) and x2(t) to the external forces

F1(t) and F2(t) in the system shown in Fig. 11.12.

F2(t)

F1(t)

b1

m2

m1

k2

k1

x2 = 2

x2

x1

•

x1 = 1
•

v

v

Figure 11.12. Two-input, two-output system considered
in Example 11.5.

11.5. Transfer Functions of Multi-Input, Multi-Output Systems 285

The following equations of motion were derived for this system in Example 3.4:

m1
d2x1

dt2
+ b1

dx1

dt
+ (k1 + k2)x1 − k2x2 = F1,

m2
d2x2

dt2
+ k2x2 − k2x1 = F2.

Setting initial conditions to zero and taking the Laplace transform of the basic equations

of motion yields

m1s2X1(s) + b1sX1(s) + (k1 + k2)X1(s) − k2X2(s) = F1(s),

m2s2X2(s) + k2X2(s) − k2X1(s) = F2(s).

The two preceding equations can be put in a matrix form:
[

m1s2 + b1s + (k1 + k2) −k2

−k2 m2s2 + k2

] [

X1(s)

X2(s)

]

=
[

F1(s)

F2(s)

]

.

This matrix equation can be solved for X1(s) and X2(s) by use of Cramer’s rule. According

to Cramer’s rule, the two unknowns can be calculated as the ratios of determinants:

X1(s) =

∣

∣

∣

∣

F1(s) − k2

F2(s) m2s2 + k2

∣

∣

∣

∣

∣

∣

∣

∣

m1s2 + b1s + k1 + k2 − k2

−k2 m2s2 + k2

∣

∣

∣

∣

,

X2(s) =

∣

∣

∣

∣

m1s2 + b1s + k1 + k2 F1(s)

−k2 F2(s)

∣

∣

∣

∣

∣

∣

∣

∣

m1s2 + b1s + k1 + k2 − k2

−k2 m2s2 + k2

∣

∣

∣

∣

.

Calculating the values of the determinants gives

X1(s) =
F1(s)(m2s2 + k2) + k2F2(s)

(m1s2 + b1s + k1 + k2)(m2s2 + k2) − k2
2

,

X2(s) =
(m1s2 + b1s + k1 + k2)F2(s) + k2F1(s)

(m1s2 + b1s + k1 + k2)(m2s2 + k2) − k2
2

.

From these two equations, all four transfer functions of the two-input, two-output system

can be obtained:

T11(s) =
X1(s)

F1(s)

∣

∣

∣

∣

F2(s) = 0

=
m2s2 + k2

m1m2s4 + m2b1s3 + (m1k2 + m2k1 + m2k2)s2 + b1k2s + k1k2
,

T12(s) =
X1(s)

F2(s)

∣

∣

∣

∣

F1(s) = 0

=
k2

m1m2s4 + m2b1s3 + (m1k2 + m2k1 + m2k2)s2 + b1k2s + k1k2
,

T21(s) =
X2(s)

F1(s)

∣

∣

∣

∣

F2(s) = 0

=
k2

m1m2s4 + m2b1s3 + (m1k2 + m2k1 + m2k2)s2 + b1k2s + k1k2
,

T22(s) =
X2(s)

F2(s)

∣

∣

∣

∣

F1(s) = 0

=
m1s2 + b1s + k1 + k2

m1m2s4 + m2b1s3 + (m1k2 + m2k1 + m2k2)s2 + b1k2s + k1k2
.

286 System Transfer Functions

Recall from Section 11.4 that the denominator of the transfer function is the same as the

characteristic polynomial (the left-hand side of the system characteristic equation). The

four transfer functions derived for this system represent the relations between different

pairs of output and input variables within the same system, and it can be seen that the

denominator in each transfer function is the same because it represents the inherent

dynamic characteristics of the same system. The characteristic equation is

m1m2s4 + m2b1s3 + (m1k2 + m2k1 + m2k2)s2 + b1k2s + k1k2 = 0.

Furthermore, from the equations previously derived for X1(s) and X2(s), one can obtain

the system input–output differential equations by multiplying both sides of those equa-

tions by the denominator of the expression on the right-hand side and taking the inverse

Laplace transform to obtain

m1m2
d4x1

dt4
+ m2b1

d3x1

dt3
+ (m1k2 + m2k1 + m2k2)

d2x1

dt2
+ b1k2

dx1

dt

+ k1k2x1 = m2
d2 F1

dt
+ k2 F1 + k2 F2

for x1(t) as the output variable and

m1m2
d4x2

dt4
+ m2b1

d3x2

dt3
+ (m1k2 + m2k1 + m2k2)

d2x2

dt2
+ b1k2

dx2

dt
+ k1k2x2

= k2 F1 + m1
d2 F2

dt2
+ b1

dF2

dt
+ (k1 + k2)F2

for x2(t) as the output variable. It can be verified that the input–output equations derived

here with the system transfer functions are the same as the input–output equations for

the same system obtained in Example 3.4 by combining the system basic equations of

motion in the time domain.

11.6 TRANSFER FUNCTION BLOCK-DIAGRAM ALGEBRA

The development of the concept of a system transfer function operating within a

single block to represent an input–output relationship for a given linear system makes

it possible to use transfer function block diagrams as “building blocks.” The building

blocks may then be used to assemble a complete system from a number of individual

elementary parts in a manner somewhat similar to that used for the simulation block

diagrams in Chap. 2. However, there are several important differences between the

simulation block diagrams and the transfer function block diagrams. First, the two

kinds of block diagrams are set in different domains, one in the time domain and the

other in the domain of complex variable s. Second, the simulation block diagrams

can be used to model linear and nonlinear systems, whereas the transfer function

block diagrams can be used only with systems that are assumed to be linear. Third,

the types of elementary blocks used in the two kinds of block diagrams are different.

In addition to the summation block that appears in both block diagrams, the other

type of block used in the transfer function block diagrams is a block representing a

transfer function T(s), as shown in Fig. 11.4.

The process of assembling elementary blocks to develop a complete transfer

function model of a system will be illustrated in an example of an electromechanical

system involving a dc motor to control an angular position of an antenna dish. The

11.6. Transfer Function Block-Diagram Algebra 287

R L

ei

Ideal

dc motor

(2)

(3)

(4)
JTt

i

B

(1)

Ω Ω

K

θ

Figure 11.13. Schematic diagram of a motor-driven antenna dish system.

system is shown schematically in Fig. 11.13. The motor is driven by the input voltage

source ei applied to the armature winding having resistance R and inductance L. The

coupling coefficient for the motor is �r, and the motor torque is Tt. The combined

mechanical inertia of the rotor and the antenna dish is J, and the combined rotational

damping in the system is B. The rotational motion of the antenna is constrained by

the torsional spring K. The output variable is the angular displacement of the antenna

dish �.

The elemental equations for the system are as follows: For the armature winding

of the motor,

ei − e34 = Ri + L
di

dt
. (11.30)

For the ideal dc motor acting as an electromechanical transducer,

e34 =
1

�r
�, (11.31)

Tt =
1

�r
i. (11.32)

For the mechanical part of the system,

Tt = J
d2�

dt2
+ B

d�

dt
+ K�. (11.33)

Assuming zero initial conditions and converting Eqs. (11.30)–(11.33) to the s domain

yields

Ei (s) − E34(s) = RI(s) + LsI(s), (11.34)

Tt(s) =
1

�r
I(s), (11.35)

E34(s) =
1

�r
Ω(s), (11.36)

Tt(s) = Js2
�(s) + Bs�(s) + K�(s). (11.37)

Figure 11.14 shows the process of constructing the transfer function block diagram

for the system, step by step.

288 System Transfer Functions

Step 1
LsR +

1 I(s)Ei(s)

E34(s)

+
−

Step 2
LsR +

1 I(s)Ei(s)

E34(s)

+
−

1

r

Tt(s)

Step 3
LsR +

1 I(s)Ei(s)

E34(s)

+
−

θ

θ

1 Tt(s)

KBsJs ++
2

1)(s

Step 4
LsR +

1 I(s)Ei(s)

E34(s)

+
−

1 Tt(s)

KBsJs ++
2

1)(s

1

s
)(s

α

rα

r
α

rα

Ω

Figure 11.14. The process of developing the transfer function block diagram.

In Step 1, the part of the block diagram described by Eq. (11.34) is drawn with

input Ei(s) and the outgoing signal from this part of the system I(s). In Step 2, the

block converting current I(s) to torque Tt(s) per Eq. (11.35) is added. In Step 3,

the transfer function relating displacement �(s) to torque Tt(s) is attached. One

completes the process in Step 4 by closing the loop from the output displacement

to the voltage induced in the armature winding E34(s) by first using a differentiator

to convert the displacement to angular velocity Ω(s) and then inserting a gain block

representing Eq. (11.36).

The detailed transfer function block diagram developed for the antenna dish

system is an interconnection of elementary blocks described by the basic equations

of motion in the s domain, Eqs. (11.34)–(11.37). Although such a detailed illustration

of the system components and the internal interactions among the system variables

are usually of value in system analysis, it is also desirable to know the overall equiv-

alent system transfer function relating the output variable to the input variable.

The detailed block diagram, like the one shown in Fig. 11.14, can be reduced to a

single-block equivalent transfer function by use of the rules of block-diagram alge-

bra. Seven basic rules of block-diagram algebra are subsquently presented. Rules

1, 2, and 3 are used to replace different combinations of blocks with an equivalent

single-block transfer function. Rules 4–7 are used in rearranging block diagrams by

moving summing points and branch (pickoff) points around blocks to simplify the

interconnections among the blocks so that Rule 1, 2, or 3 can then be applied. The

overarching principle in making changes within a system is that the system output

signal(s) must not be affected by the changes.

11.6. Transfer Function Block-Diagram Algebra 289

U(s)
T

1
(s) T

2
(s)

Z(s) Y(s)
T

eq
(s)=T

1
(s)T

2
(s)

U(s) Y(s)

(a) (b)

Figure 11.15. (a) Two blocks in series and (b) an equivalent single-block representation.

Rule 1: Combining blocks in series (cascaded). For two blocks of transfer functions T1(s)

and T2(s) in series, as shown in Fig. 11.15(a), the equivalent transfer function is

Teq(s) =
Y(s)

U(s)
=

Y(s)

Z(s)

Z(s)

U(s)
= T2(s)T1(s). (11.38)

In general, the equivalent transfer function for n blocks in series is

Tser(s) =
n

∏

i=1

Ti (s). (11.39)

Rule 2: Combining blocks in parallel. For two blocks connected in parallel, as shown in

Fig. 11.16(a), the equivalent transfer function is

Teq(s) =
Y(s)

U(s)
=

Y1(s) + Y2(s)

U(s)
=

U(s)T1(s) + U(s)T2(s)

U(s)
= T1(s) + T2(s). (11.40)

In general, the equivalent transfer function for n blocks in parallel is

Tpar(s) =
n

∑

i=1

Ti (s). (11.41)

Rule 3: Combining blocks in a feedback system. In a feedback system, the system

output variable Y(s) is transferred through a feedback transfer function H(s) back

to the input of the system where it is subtracted from or added to the input sig-

nal, thus closing a negative- or positive-feedback loop, respectively. Figure 11.17(a)

shows a block diagram of a closed-loop feedback system. The output variable can be

expressed as

Y(s) = E(s)G(s) = [U(s) ± H(s)Y(s)]G(s) = U(s)G(s) ± H(s)Y(s)G(s). (11.42)

U(s)

(a) (b)

T
1
(s)

T
2
(s)

Y
1
(s)

Y
2
(s)

+

+

Y(s) U(s)
T

eq
(s)=T

1
(s)+T

2
(s)

Y(s)

Figure 11.16. (a) Two blocks in parallel and (b) an equivalent single-block representation.

290 System Transfer Functions

E(s)
G(s)

H(s)

Y(s)

U(s) Y(s)

(a) (b)

U(s)

TCL(s) =
G(s)

1 + G(s)H(s)−

−+
+

Figure 11.17. (a) Feedback system and (b) an equivalent single-block representation.

Hence the equivalent transfer function of a closed-loop feedback system is

TCL(s) =
Y(s)

U(s)
=

G(s)

1 + G(s)H(s)
(11.43)

for a negative-feedback system and

TCL(s) =
Y(s)

U(s)
=

G(s)

1 − G(s)H(s)
(11.44)

for a positive-feedback system.

Rule 4: Moving a summing point forward around a block. When a summing point is being

moved forward around a block, it is necessary to make sure that the output Y(s) remains

the same after the change is made. The output signal in the original system shown in

Fig. 11.18(a) is

Y(s) = [U(s) − Z(s)]T(s). (11.45)

The output signal in the modified system, Fig. 11.18(b), is

Y(s) = U(s)T(s) − Z(s)T(s) = [U(s) − Z(s)]T(s). (11.46)

This result verifies that, in spite of moving the summing point, the system output remains

the same.

Rule 5: Moving a summing point backward around a block. This rule is illustrated in

Fig. 11.19. The output signal in the original system [Fig. 11.19(a)] is

Y(s) = U(s)T(s) − Z(s). (11.47)

The output remains the same in the modified system [Fig. 11.19(b)]:

Y(s) =
[

U(s) − Z(s)
1

T(s)

]

T(s) = U(s)T(s) − Z(s). (11.48)

T(s)
+

−

U(s)
Y(s)

Z(s)

T(s)

+

−

U(s)

Z(s)

T(s)
Y(s)

(a) (b)

Figure 11.18. Moving a summing point for-
ward: (a) original system and (b) modified sys-
tem.

11.6. Transfer Function Block-Diagram Algebra 291

T(s)
+

−

U(s)
Y(s)

Z(s))(

1

sT

+

−

U(s)

Z(s)

T(s)

Y(s)

(a) (b)

Figure 11.19. Moving a summing point back-
ward: (a) original system and (b) modified sys-
tem.

Rule 6: Moving a branch point forward around a block. The original and modified systems

are shown in Fig. 11.20. The outputs in the original system [Fig. 11.20(a)] are

Y1(s) = U(s)T(s), Y2(s) = U(s). (11.49)

The output signals in the modified system [Fig. 11.20(b)] are

Y1(s) = U(s)T(s), Y2(s) = U(s)T(s)
1

T(s)
= U(s), (11.50)

which proves that neither output has been changed as a result of moving the branch point.

Rule 7: Moving a branch point backward around a block. This rule is illustrated in Fig.

11.21. The two outputs in the original system [Fig. 11.21(a)] are obviously identical:

Y1(s) = Y2(s) = U(s)T(s), (11.51)

and they both remain unchanged in the modified system [Fig. 11.21(b)]:

Y1(s) = U(s)T(s), Y2(s) = U(s)T(s). (11.52)

EXAMPLE 11.6

Find the overall transfer function of the antenna dish system represented by the block

diagram developed in Fig. 11.14 and repeated in Fig. 11.22 for convenience.

The objective now is to reduce the detailed block diagram shown in Fig. 11.22 to

a single-block representation with the overall system transfer function T(s) relating the

angular position of the antenna dish to the input voltage:

T (s) =
Θ(s)

Ei (s)
.

Y1(s)
T (s)

)(

1

sT

U(s)

Y2(s)

T (s)
U(s)

Y2 (s)

Y1 (s)

(a) (b)

Figure 11.20. Moving a branch point for-
ward: (a) original system and (b) modified
system.

292 System Transfer Functions

Y1 (s)

T (s)

T (s)

U (s)

Y2 (s)

T (s)

Y2 (s)

Y1 (s)

(b)(a)

Figure 11.21. Moving a branch point
backward.

First, it can be seen that there are three blocks connected in series in the forward path,

which can be reduced to a single block by use of Eq. (11.39):

T1(s) =
1

R + Ls

1

�r

1

Js2 + Bs + K

=
1

J L�rs3 + �r(J R + BL)s2 + �r(BR + KL)s + KR�r
.

There are also two blocks in series in the feedback path, and their equivalent transfer

function is

T2(s) =
(

1

�r

)

s =
s

�r
.

The system transfer function block diagram is now reduced to the form shown in

Fig. 11.23. This is a negative-feedback configuration that one can reduce to a single block

by setting G(s) = T1(s) and H(s) = T2(s) and using Eq. (11.43) to obtain the overall

system transfer function:

T(s) =
Θ(s)

Ei (s)
=

T1(s)

1 + T1(s)T2(s)

=
�r

J L�2
r s3 + (J R + BL)�2

r s2 + [(BR + KL)�2
r + 1] s + KR�2

r

.

The denominator of the transfer function gives the system characteristic equation,

J L�2
r s3 + (J R + BL)�2

r s2 +
[

(BR + KL)�2
r + 1

]

s + KR�2
r = 0.

Furthermore, based on the definition of the system transfer function, the system input–

output equation in the time domain is found to be

J L�2
r

d3�

dt3
+ (J R + BL)�2

r

d2�

dt2
+ [(BR + KL)�2

r + 1]
d�

dt
+ KR�2

r � = �rei .

KBsJs ++2

1

r

1

LsR +
1

r

1 s

Ei(s) (s)

−
+ α

α

Θ

Figure 11.22. Block diagram of the antenna dish system.

11.7. MATLAB Representation of Transfer Function 293

T1(s)

T2(s)

+
−

Ei(s) (s)Θ

Figure 11.23. The dish antenna system as a simple negative-
feedback system.

Note that, as expected, this is a third-order model, because of three independent energy-

storing elements included in the system – inductance L, mechanical inertia J, and rota-

tional spring K.

11.7 MATLAB REPRESENTATION OF TRANSFER FUNCTION

As will be discussed in the following chapters, the transfer function representation

is a powerful tool in system modeling and control. Several computer-aided analysis

packages such as MATLAB have incorporated techniques and algorithms to aid in

this analysis. In this section, the functionality of MATLAB and the Control Systems

Toolbox, a common extension of MATLAB, is presented.

In the previous sections of this chapter, it was established that transfer func-

tions are ratios of polynomials in s. These polynomials have coefficients that are

constant and have no imaginary parts. MATLAB has several built-in functions that

operate on polynomials that are useful when one is dealing with transfer function

representations.

First, consider the following polynomial in s:

A(s) = ansn + an−1sn−1 + · · · + a1s + a0.

The essential information contained in this polynomial is completely contained in

the coefficients of the polynomial. Consider the following vector:

A = [an an−1 . . . a1 a0].

The vector is an adequate representation of the polynomial as long as a consistent

interpretation of the vector is maintained. In other words, as long as a convention is

established such that the coefficient of the highest order of the polynomial is listed

first and that all coefficients (even those whose value is zero) are included, the vector

is a complete representation of the polynomial.

In the previous sections, the importance of the poles of the transfer function was

established. Finding the poles of a transfer function involves finding the roots (often

complex) of a polynomial in the denominator of the transfer function. MATLAB has

a very robust polynomial root-solving algorithm that is easy to use. The MATLAB

command is

>> roots(a)

where a is a vector containing the coefficients of a polynomial.

For example, take the following cubic polynomial:

3s3 + 5s2 + s + 10.

294 System Transfer Functions

The roots of this polynomial can easily be found with the following MATLAB com-

mand:

>> roots([3 5 1 10])

The results are

ans =

−2.2025
0.2679 + 1.2007i

0.2679 − 1.2007i

The importance of listing zero coefficients can best be illustrated by an example

as well. Consider this fourth-order polynomial:

A(s) = s4 + 10s2 + 5s + 30.

The incautious reader would be tempted to use the following command to find the

roots:

>> roots([1 10 5 30])

which gives the following results:

ans =

−9.8021
−0.0989 + 1.7466i

−0.0989 − 1.7466i

Clearly, however, four roots are to be expected, not three. By ignoring the coeffi-

cient of the s3 term (in this case, zero), MATLAB interprets the vector as representing

a third-order polynomial and gives the wrong answers. The correct command is

>> roots([1 0 10 5 30])

which gives the correct answers:

ans =

0.6388 + 2.7138i

0.6388 − 2.7138i

−0.6388 + 1.8578i

−0.6388 − 1.8578i

Although the complete information of a transfer function is contained in two

vectors, each of which represents a polynomial, MATLAB offers a data structure

that can more easily be manipulated and used for complicated analysis and design

operations. The details of this data structure are not important to the beginning user

and are best left to individual study. The command to create such an object is simply

>> mytf=tf(b,a)

where b is a vector representing the numerator polynomial and a represents the

denominator polynomial.

11.7. MATLAB Representation of Transfer Function 295

20000300

)50(2000
2

++

+

ss

s

32534521

220
23

+++ sss

E(s) X(s)

Figure 11.24. Transfer function block diagram of amplifier–motor pair.

In subsequent chapters (and in Appendix 3), the power of this approach is illus-

trated fully; the following two examples demonstrate the use of these functions for

simplifying series and feedback transfer functions.

EXAMPLE 11.7

In electromechanical control applications, a common task is to model the dynamics of

actuators (e.g., a dc motor). For high-performance applications, it is sometimes necessary

to model the amplifier as well. Figure 11.24 shows two cascaded transfer functions, one

that represents the amplifier, one the motor. Using both the rules outlined in Section

11.6 and the MATLAB data structure for manipulating system transfer functions, find

the equivalent transfer function for the amplifier–motor pair.

SOLUTION

As discussed in Section 11.6, two transfer functions in series (cascaded) are combined

by multiplication of the numerator and denominator polynomials. The algebra involved

is straightforward, but somewhat tedious. It is left as an exercise to the reader to verify

that the process of multiplying the polynomials leads to the following overall transfer

function:

T(s) =
X(s)

E(s)
=

440000(s + 50)

s5 + 321s4 + 26645s3 + 523825s2 + 6997500s + 6500000
.

With MATLAB, the process is straightforward. First, enter the four polynomials as vec-

tors:

>> n1=2000*[1 50]

>> d1=[1 300 20000]

>> n2=220

>> d2=[1 21 345 325]

Then use the tf() function to form two transfer function objects in MATLAB:

>>tf1=tf(n1,d1)

Transfer function:

2000 s + 100000

sˆ2 + 300 s + 20000

Note that MATLAB echoes the transfer function in a format that is easy to read:

>>tf2=tf(n2, d2)

Transfer function:

220

sˆ3 + 21 sˆ2 + 345 s + 325

296 System Transfer Functions

Combining the two transfer functions is a simple case of multiplying the two objects

together:

tf3=tf1*tf2

Transfer function:

440000 s + 2.2e007

--

sˆ5 + 321 sˆ4 + 26645 sˆ3 + 523825 sˆ2 + 6.998e006 s + 6.5e006

The results are the same as those obtained by hand.

EXAMPLE 11.8

Now consider the same two transfer functions, but with the amplifier in a feedback loop,

as shown in Fig. 11.25.

According to the rules of Section 11.6, the overall transfer function would be given

by

T(s) =
X(s)

E(s)
=

G(s)

1 + G(s)H(s)
,

where G(s) is the transfer function in the forward (top) block and H(s) is the transfer func-

tion in the feedback (bottom) block. Again, you carry out the process by manipulating the

polynomials and multiplying them together, meticulously following the algebraic rules.

Note that the G(s)H(s) term in the denominator is the same as the results in the previous

example. Even starting from that point, however, the process would be a lengthy opera-

tion of multiplying, grouping, and carefully checking the math. In MATLAB, however,

it’s quite simple. Recall that, as a result of the previous example, three transfer function

objects are already in the MATLAB workspace, tf1 [our G(s)], tf2 [our H(s)], and

tf3 [G(s) H(s)].

The following command solves the problem in a single stroke:

>> tf4=tf1/(1+tf3)

Transfer function:

2000 sˆ6 + 742000 sˆ5 + 8.539e007 sˆ4 + 3.712e009 sˆ3 + 6.638e010 sˆ2 + 7.128e011s + 6.5e011

- -

sˆ7 + 621 sˆ6 + 142945 sˆ5 + 1.494e007 sˆ4 + 6.975e008 sˆ3 + 1.274e010 sˆ2 + 1.573e011s + 5.7e011

−

20000300

)50(2000
2

++

+

ss

s

32534521

220
23

+++ sss

E(s) X(s)

+

Figure 11.25. Two transfer functions in a feedback configuration.

11.7. MATLAB Representation of Transfer Function 297

The results of the MATLAB operation demonstrate an important pitfall of numerical

computations. If you follow through the process by hand, you should end up with a

fourth-order numerator polynomial and a fifth-order denominator polynomial. So what

happened in MATLAB? The answer lies in the fact that all computers have a finite repre-

sentation of numbers and there is often some round-off error in computations, particularly

those that have numbers that cover a wide dynamic range, such as the coefficients do in

this problem. The issue becomes clearer when you look at the poles and zeros of the new

transfer function.

First, use tfdata() to extract the numerator and denominator polynomials back

into vectors:

>> [num den]=tfdata(tf4,’v’)

num =

1.0e+011 *

0 0.0000 0.0000 0.0009 0.0371 0.6638 7.1275 6.5000

den =

1.0e+011 *

0.0000 0.0000 0.0000 0.0001 0.0070 0.1274 1.5730 5.7000

Now use the roots command to find the poles (roots of denominator) and zeros

(roots of numerator). Because we are investigating issues related to round-off error, we

would also like to view more significant digits in the results, so we set the format to long:

>> format long

>> poles4=roots(den)

poles4 =

1.0e+002 *

−2.00000000000376
−1.99908539617988
−1.00266811228711
−1.00000000000020
−0.07752455677075 + 0.14393720759809i

−0.07752455677075 − 0.14393720759809i

−0.05319737798755
>> zeros4=roots(num)

zeros4 =

1.0e+002 *

−2.00000000000000
−1.00000000000000
−0.50000000000000
−0.10000000000000 + 0.15000000000000i

−0.10000000000000 − 0.15000000000000i

−0.01000000000000
>>

Now examine the first and fourth poles and compare their values with the first and

second zeros. You will note that they are exceptionally close to one another in value,

differing only in the 12th decimal place and beyond. For all intents and purposes, they

298 System Transfer Functions

are equal (indeed, they are) and should cancel out, leaving a fourth-order numerator and

fifth-order denominator as expected.

Fortunately, MATLAB has an easy solution to this problem. The function

minreal () offers the user an option to carry out pole-zero cancellation to a speci-

fied tolerance. The default tolerance is often sufficient:

<< tf5 = minreal(tf4)

Transfer function:

2000sˆ4 + 1.42e005sˆ3 +2.79e006sˆ2 + 3.515e007s + 3.25e007

sˆ5 + 321sˆ4 + 2.664e004sˆ3 + 5.238e005sˆ2 + 7.437e006s + 2.85e007

which is the expected, and correct, result.

Example 11.8 is yet another demonstration of the importance of validation of

any result obtained by numerical means. In this case, the results were not accepted

solely on face value, but rather were compared with the form of the result that was

expected. One can easily compute the expected order of the result by seeing how the

various polynomials are combined in the simplification (but not necessarily carrying

out the simplification by hand). It is essential that all results be critically evaluated

in order that the user may gain confidence in the answer.

11.8 SYNOPSIS

The concept of a linear system transfer function was developed here for the case in

which the input to the system is an exponential of the form u(t) = Uest , where U is

a constant that may be complex or real, s is the complex variable � + j�, and the

particular solution is y(t) = Yest , where Y is a complex coefficient.

An alternate approach was presented for readers familiar with the Laplace trans-

formation, in which the system transfer function was defined as a ratio of the Laplace

transform of the output signal over the Laplace transform of the input signal with all

initial conditions set to zero.

For a linear system having an input–output differential equation of the form

an

dn y

dtn
+ an−1

dn−1 y

dtn−1
+ · · · + a0 y = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · · b0u, (11.53)

the system transfer function T(s) is expressed in block diagram form in Fig. 11.26.

Note that the term containing the ith power of s in the denominator of the transfer

function corresponds to the term in the system input–output differential equation

involving the ith derivative of the output, whereas the term containing the jth power

of s in the numerator of the transfer function corresponds to the term in the sys-

tem input–output differential equation involving the jth derivative of the input. Thus

Figure 11.26. General form of the ratio-of-polynomial-type system transfer function, where m ≤ n.

Problem 11.1 299

the system input–output differential equation is readily recovered, by simple obser-

vation, from inspection of the numerator and denominator of the system transfer

function.

The denominator of T(s), when set equal to zero, is a form of the system char-

acteristic equation

ansn + an−1sn−1 + · · · + a0 = 0, (11.54)

which may also be expressed in terms of its roots (poles) as

an(s − p1)(s − p2) · · · (s − pn) = 0. (11.55)

The real poles pi correspond to the inverse system time constants,

pi =
1

�i

, (11.56)

and each pair of complex-conjugate roots pk, pk+1 correspond to exponential coef-

ficients of a damped sinusoid:

pk, pk+1 = �k ± j�dk = −�k�nk ± j�nk

√

1 − � 2
k
, (11.57)

where

�k =
�k

√

�2
k + �2

dk

,

�nk =
√

�2
k + �2

dk.

The concept of a transfer function developed for a system with one input and

one output was extended to linear multi-input, multi-output systems.

One of the useful properties of the transfer function presented in this chapter is

that it can be conveniently used (by use of the final-value and initial-value theorems)

to determine conditions that exist in a system subjected to a step input immediately

after the input signal is applied, or at t = 0+, and at steady state. This property is

often used in the preliminary stages of system analysis or to check solutions obtained

by computer simulation.

Basic rules of the transfer function block diagram algebra were introduced. The

rules are useful in reducing detailed transfer function block diagrams to a single-block

representation. Finally, representation of the system transfer function in MATLAB

was outlined.

In the next chapter, a form of the transfer function, the sinusoidal transfer func-

tion T(j�), will be derived with s = j�, which will be used for dealing with the steady

response of a system to steady sinusoidal inputs.

PROBLEMS

11.1 (a) Prepare a detailed transfer function block diagram for the linearized equations

of the rotational system discussed in Example 2.7.

(b) Express the overall input–output transfer functions with block diagrams for the lin-

earized system relating (1) TK to the input torque Te, with Tw = 0, and (2) TK to the

other input torque Tw, with Te = 0.

300 System Transfer Functions

11.2 (a) Prepare detailed transfer function block diagrams for each of the two subsys-

tems of Example 2.6 [i.e., for the subsystems described by Eqs. (2.42) and (2.43)] after

linearizing the nonlinear damper to obtain an incremental damping coefficient:

binc =
dfNL

dv3

∣

∣

∣

∣

v3

.

(b) Combine the diagrams prepared in part (a) into a single transfer function block

diagram with input X1 and outputs X2 and X3.

(c) Apply the rules of the block-diagram algebra to the block diagram prepared in part

(b) to obtain transfer functions relating X2 to X1 and X3 to X1.

11.3 (a) Prepare a detailed transfer function block diagram for the electric circuit dis-

cussed in Example 7.1.

(b) Express the overall transfer function with a block diagram relaling Eo to Es.

11.4 (a) Prepare a detailed transfer function block diagram for the linearized state-

variable equations in Example 7.3.

(b) Express the overall transfer function with a block diagram relating E2g to Es.

11.5 (a) For the case in which Tw = C2|�2|�2, prepare a detailed transfer function block

diagram for the linearized rotational system discussed in Example 2.7.

(b) Combine the linearized equations to develop the input–output system differential

equation relating �̂2 to T̂e.

(c) Express the overall transfer function with a block diagram relating �2 to Te.

11.6 (a) Prepare a detailed transfer function block diagram for the motor-driven inertia

system discussed in Example 10.2.

(b) Express the overall transfer function with a block diagram relating Ω1 to Es .

11.7 (a) Prepare a detailed transfer function block diagram for the linearized fluid con-

trol system discussed in Example 9.2.

(b) Express the overall transfer function with a block diagram relating P2r to Ao.

11.8 (a) Prepare a detailed transfer function block diagram for the third-order system

having the following three state-variable equations:

dx1

dt
= a11x1 + a12x2 + b11u1,

dx2

dt
= a21x1 + a23x3,

dx3

dt
= a31x1 + a32x2 + a33x3.

(b) Use Cramer’s rule with determinants to find the transfer function relating X3 to U1,

and express the overall transfer function with a block diagram for this input–output

combination.

(c) For an output y1 = c12x2 + c13x3, find the transfer function relating Y1 to U1, and

express the overall transfer function with a block diagram for this input–output

combination.

Problems 11.9–11.11 301

11.9 If two systems have the following transfer functions,

T1(s) =
13s + 1

10s2 + 3s + 1
,

T2(s) =
130s + 1

1000s2 + 30s + 1
,

which system responds faster? Verify your answer by using the MATLAB system object

and the step() function.

11.10 Consider the radar-tracking control system shown in Fig. P11.10.

(a) Find the closed-loop transfer function relating the output Y(s) to the input U(s).

(b) Compare the poles of the closed-loop transfer function with those of the system for

which X(s) is the input and Y(s) is the output. What do you conclude?

(c) Using MATLAB’s system objects and the step() command to compare the closed-

loop step response with the open-loop [Y(s)/X(s)] step response.

Figure P11.10. Transfer function block diagram of a radar-tracking control system.

11.11 The transfer function block diagram of a system designed to control the liquid

level in a chemical process is shown in Fig. P11.11. In this diagram, kp is an adjustable

gain that can be set by the machine operator.

(a) Derive the closed-loop transfer function relating H a(s) to Hd(s).

(b) How does the value of kp affect the locations of the closed-loop poles relative to the

poles of the open-loop system?

(c) Write a script in MATLAB that will compute the values of the closed-loop poles for

a range of values of kp and plot them on the complex plane. From this plot and your

knowledge of system response, can you choose a value of kp that will yield desirable

results for a system such as this?

Figure P11.11. Transfer function block diagram of a liquid-level control system.

12

Frequency Analysis

LEARNING OBJECTIVES FOR THIS CHAPTER

12–1 To apply frequency-response transfer functions to determine response of linear

systems to sinusoidal or other periodic inputs.

12–2 To construct (analytically and/or with MATLAB) and to interpret magnitude

and phase characteristics (Bode diagrams) of system frequency response.

12–3 To construct (analytically and/or with MATLAB) and to interpret polar plots

of frequency response (Nyquist diagrams).

12–4 To develop, manipulate, and simplify transfer function block diagrams of com-

plex systems made up of many subsystems.

12.1 INTRODUCTION

The response of linear systems to sinusoidal inputs forms the basis of an extensive

body of theory dealing with the modeling and analysis of dynamic systems. This

theory was developed first in the field of communications (telephone and radio)

and later became extended and then widely used in the design and development of

automatic control systems. The theory is useful not only in determining the sinusoidal

response of a system but also in specifying performance requirements (as in sound-

system components or in a radar-tracking system), in finding the responses to other

periodic inputs (square wave, sawtooth wave, etc.),1 and for predicting the stability

of feedback control systems (amplifiers, regulators, and automatic controllers). A

graphical portrayal of the input and output sinusoids of a typical linear system is

provided in Fig. 12.1.

12.2 FREQUENCY-RESPONSE TRANSFER FUNCTIONS

Recall from Chap. 4 that the response of a linear system to an input signal u(t) is the

sum of the homogeneous (free) and particular (forced) solutions:

y(t) = yh(t) + yp(t). (12.1)

Here the homogeneous part of the response of a stable system is of minor interest

(because it usually dies away soon and, in a linear system, in no way affects the

1 See Appendix 1 for a review of the Fourier series and its use in describing a periodic time function in

terms of its harmonic components.

302

12.2. Frequency-Response Transfer Functions 303

Input x(t) = Xm sin ωt

Output y(t) = Ym sin (ωt + φT)

t

Xm

2π/ω

Ym

φT− ω

Figure 12.1. Sinusoidal input and output waveforms for a linear dynamic system.

particular solution). Thus, after the transient period, the steady-state response is

equal to the particular solution, yss(t) = yp(t). Also, recall from Chap. 4 that the

particular solution is of the same form as that of the input, its derivatives, or both. In

Chap. 11, it was shown that any input signal can be represented by an exponential

form:

u(t) = U(s)est , (12.2)

where U(s) is the complex input-amplitude coefficient. Therefore the steady-state,

or particular, solution will take the same exponential form,

yss(t) = yp(t) = Y(s)est , (12.3)

where Y(s) is the complex output-amplitude coefficient. Substituting Y(s) =
T(s)U(s) from Eq. (11.5) into Eq. (12.3) yields

yss(t) = Y(s)est = T(s)U(s)est . (12.4)

Furthermore, it was shown in Chap. 11 that exponential form (12.2) can be used to

describe a sinusoid by setting s = j�. Thus, for sinusoidal inputs, the steady-state

response is

yss(t) = Y(j�)e j�t = T(j�)U(j�)e j�t , (12.5)

where U(j�), Y(j�), and T(j�) are sinusoidal input, the output, and the frequency-

response transfer function, respectively. Expressing U, Y, and T in complex expo-

nential form, i.e., U(j�) = Ume j�y, Y(j�) = Yme j�y , and T(j�) = Te j�T and substi-

tuting into Eq. (12.5) gives

Yme j�y e j�t = Te j�T Ume j�u e j�t . (12.6)

By convention, the time axis is set such that the phase angle of the input sinusoid

�u = 0 so that e j�u is equal to unity. Further simplifying by dividing both sides of

Eq. (12.6) by e j�t yields

Yme j�y = TUme j�T . (12.7)

Hence the amplitude of the output sinusoid is

Ym = TUm, (12.8)

and the phase angle of that sinusoid relative to the input is

�y = �T. (12.9)

304 Frequency Analysis

Im[T (jω)]

b

T (jω)=a+ jb

φT(ω)

a

T (ω)

Re[T(jω)]

Figure 12.2. Complex plan representation
of T(j�).

To better understand this important result, recall that the frequency-response

transfer function T(j�) follows directly from the system transfer function T(s) if the

complex variable s is allowed to be limited to a pure imaginary number j�, i.e.,

T(j�) = T(s)|s= j�. (12.10)

At a given frequency �, the transfer function is a complex number having (gen-

erally) both real and complex parts. As seen in Fig. 12.2, a complex number can also

be expressed in terms of its magnitude (or absolute value) and phase angle:

T(�) = |T(j�)|, (12.11)

�T(�) = � T(j�). (12.12)

Thus, when a linear system is subject to a sinusoidal input, its steady-state response

is a sinusoid of the same frequency. The amplitude of the output is equal to the

amplitude of the input times the magnitude of the transfer function evaluated at

that frequency. The phase of the output sinusoid relative to the input is the angle of

the transfer function evaluated at that frequency. The frequency-response transfer

function T(j�) thus provides the information needed to describe the steady-state

response of linear time-invariant systems to sinusoidal inputs.

Note that the absolute value in Eq. (12.11) represents the magnitude of the

complex number and the angle in Eq. (12.12) is the angle between the radial line

drawn to that complex number and the positive x axis in the complex plane, as shown

in Fig. 12.2.

In Cartesian coordinates, the frequency-response transfer function can be

expressed in terms of its real and imaginary parts:

T(j�) = Re[T(j�)] + j Im[T(j�)] = T(�) cos �T(�) + jT(�) sin �T(�). (12.13)

Figure 12.3 shows a schematic block diagram of a single-input–single-output

system represented by a frequency-response transfer function.

T(jω) Y= T(jω)XX
Figure 12.3. Block-diagram representation of a
frequency-response transfer function.

12.2. Frequency-Response Transfer Functions 305

EXAMPLE 12.1

An electric motor operating at a constant speed of 1000 rpm is generating a vertical

vibratory force Fm that is due to an imbalance in its rotating elements. The amplitude of

force Fm is 400 N. To absorb the vibration, the motor is supported by rubber shock mounts

of stiffness k = 50,000 N/m and damping b = 800 N s/m. The mass of the motor is m =
25 kg. A simplified schematic of the system is shown in Fig. 12.4. Find the amplitude

and phase of the vertical displacement of the motor, x(t), and determine the ratio of the

magnitude of the force transmitted through the shock mounts to the magnitude of the

vibratory force.

SOLUTION

The basic equation of motion for the vertical motion of the system is

mẍ + bẋ + kx = Fm, (12.14)

where force Fm is a sinusoidal function of time having amplitude 400 N and frequency

� = 2�1000/60 = 104.7 rad/s,

Fm = 400 sin(104.7t). (12.15)

The amplitude and phase of displacement x(t) can be found by use of Eqs. (12.8)

and (12.9). The transfer function relating the displacement to force Fm is obtained from

Eq. (12.14), assuming zero initial conditions, x(0) = 0 and ẋ(0) = 0:

T(s) =
X(s)

Fm(s)
=

1

ms2 + bs + k
. (12.16)

One obtains the frequency-response transfer function of the system by putting s =
j� in Eq. (12.16):

T(j�) = T(s)|s= j� =
1

−m�2 + j�b + k
. (12.17)

For the given values of the system parameters and the frequency of vibration, � = 104.7

rad/s, the frequency-response transfer function is

T (j�) |�=104.7 =
1

−224,052 + j83,760
= 1.75 × 10−11(−224,052 − j83,760).

(12.18)

m

Fm

x

bk

Figure 12.4. A model of vibration of the electric motor considered
in Example 12.1.

306 Frequency Analysis

Note that, in Eq. (12.18), the complex number was rationalized (eliminating the

imaginary part from the denominator) by multiplying the numerator and denominator

by the complex conjugate of the denominator. Hence the magnitude of the transfer

function at the frequency of interest is

|T (j�) | = 1.75 × 10−11
√

(−224,052)2 + (−83,760)2 = 4.18 × 10−6 m/N. (12.19)

From Eq. (12.8), the amplitude of the vertical displacement is

|X(j�)| = |Fm(j�)||T(j�)| = 400 × 4.18 × 10−6 = 1.67 × 10−3 m. (12.20)

From Eq. (12.9), the phase angle of the vertical displacement is equal to the phase angle

of the frequency-response transfer function. Note that, from Eq. (12.18), it can be seen

that this complex number is in the third quadrant (both imaginary and real parts are

negative) and the proper trigonometric equation must be used:

�T = −
[

� − tan−1

(

−83,760

−224,052

)]

= −2.78 rad. (12.21)

Thus a complete mathematical expression for the vertical displacement of the motor

operating at a constant speed of 1000 rpm is

x(t) = 0.00167 sin(104.7t − 2.78) m. (12.22)

Now, the force transmitted through the shock mounts is

Ft = bẋ + kx = 800ẋ + 50,000x. (12.23)

The transfer function relating the transmitted force to the input force Fm is

TF (s) =
FT(s)

Fm(s)
=

800s + 50,000

25s2 + 800s + 50,000
. (12.24)

The frequency-response transfer function relating the two forces is

TF (j�) =
800 j� + 50,000

−25�2 + 800 j� + 50,000
, (12.25)

and for the frequency of vibration,

TF (j�)|�=104.7 =
50,000 + j83,760

−224,052 + j83,760
. (12.26)

Hence, the magnitude of the force transfer function is

|TF (j�)||�=104.7 =
√

50,0002 + 83,7602

√

(−224,052)2 + 83,7602
= 0.41. (12.27)

Thus the amplitude of the force transmitted through the shock mounts will be equal to just

over 40 percent of the amplitude of the force produced by the imbalance of the rotating

elements in the motor.

12.3. Bode Diagrams 307

It would be important to engineers considering the installation of the motor to realize

that the second-order model of the system is underdamped, with a damping ratio � = 0.36

and a natural frequency �n = 44.7 rad/s, the frequency corresponding to a motor speed

of 427 rpm. One should therefore expect the highest amplitude of vertical vibration to

occur during start-up or shutdown of the motor, when its rotational velocity is near the

resonant frequency of 427 rpm.

As illustrated in Example 12.1, the frequency-response transfer function is a

compact representation that allows one to predict the steady-state response of a

system to sinusoidal inputs of any frequency. Although a large number of practical

situations may be represented in this manner, the true power of this approach is more

apparent when one considers the implications of the Fourier series (i.e., all periodic

signals can be expressed as a sum of sinusoids) and the principle of superposition.

Superposition, the characteristic that defines linearity, states that the response of

a linear system to a sum of multiple inputs is equal to the sum of the individual

responses to each input. In the discussion that follows, the salient features of T(j�)

as described by its magnitude T(�) and its phase �T(�) will be discussed in detail

with emphasis on how they vary with frequency for various types of systems.

12.3 BODE DIAGRAMS

Because of the pioneering work of H. W. Bode on feedback amplifier design,2 the use

of logarithmic charts to portray the magnitude and phase characteristics has led to the

development of Bode diagrams. These diagrams are now widely used in describing

the dynamic performance of linear systems.

With the Bode diagrams, the magnitude T(�) versus frequency � and the phase

angle �T(�) versus frequency � characteristics are drawn on separate plots that

share a logarithmic frequency axis. The amplitude axis is either logarithmic (log T)

or quasi-logarithmic (decibels), whereas the phase axis is linear.

The emphasis here is on the use of Bode diagrams for analytical studies. How-

ever, these diagrams are also used in portraying the results of frequency-response

measurements that one obtains experimentally by applying an input sinusoid through

a range of frequencies and measuring the resultant magnitude and phase of the out-

put signal at each of the applied input frequencies. Each measurement is made after

a sinusoidal steady state has been achieved.

The procedure for preparing a set of Bode diagram curves analytically is as

follows:

Step 1. Determine the system transfer function T(s).

Step 2. Convert to the sinusoidal transfer function T(j�) by letting s = j�.

Step 3. Develop expressions for the magnitude, T(�) = |T(j�)|, and phase

angle, �T(�) = � T(j�).

Step 4. Plot log T(�) versus log � and � T versus log � or modify the log T(�)

by multiplying it by 20. This modification makes use of the decibel scale,

a scale widely used in the study of acoustics and amplifier design. Most

2 H. W. Bode, Network Analysis and Feedback Amplifier Design (Van Nostrand, Princeton, NJ, 1945).

308 Frequency Analysis

commercial plotting and spreadsheet programs make log–log and semi-

log plots easy to do.

This procedure is illustrated in Example 12.2.

EXAMPLE 12.2

Prepare Bode diagram curves for the first-order system described by the differential

equation

dy

dt
+

y

�
=

kx

�
, (12.28)

where x(t) and y(t) are the input and output, respectively.

SOLUTION

Step 1. Transforming to the s domain yields

sY(s) +
Y(s)

�
=

kX(s)

�
. (12.29)

The system transfer function is

T(s) =
Y(s)

X(s)
=

k

�s + 1
. (12.30)

Step 2. The sinusoidal transfer function is

T(j�) = T(s)|s= j� =
k

j�� + 1
. (12.31)

Step 3. To simplify the process of obtaining expressions for T(�) and �T(�), note that

T(j�) can be presented as a ratio of complex functions N(j�) and D(j�):

T(j�) =
N(j�)

D(j�)
=

N(�)e j�N(�)

D(�)e j�D(�)
(12.32)

or

T(j�) =
N(�)

D(�)
e j[�N(�)−�D(�)], (12.33)

so that the magnitude T(�) is given by

T(�) =
N(�)

D(�)
. (12.34)

In this case, N(�) = k and D(�) = | j�� + 1|, so that

T(�) =
k

| j�� + 1|
=

k
√

1 + �2� 2
(12.35)

and the phase angle �T is given by

�T(�) = �N(�) − �D(�), (12.36)

12.3. Bode Diagrams 309

where

�N(�) = tan−1(0/k) = 0, (12.37)

�D(�) = tan−1(��/1) = tan−1(��). (12.38)

Hence

�T(�) = 0 − tan−1(��) = − tan−1(��). (12.39)

Step 4. The Bode diagram curves for amplitude and phase can now be plotted with cal-

culations based on the expressions for T(�) and �T(�) developed in Step 3. The resulting

magnitude and phase curves for this first-order system are shown in Fig. 12.5.

In a preliminary system analysis, it is often sufficient to approximate the ampli-

tude and phase curves by use of simple straight-line asymptotes, which are very easily

sketched by hand. These straight-line asymptotes are included in Fig. 12.5. The first

asymptote for the magnitude curve corresponds to the case in which � is very small,

approaching zero. Using Equation (12.35) for the magnitude as � → 0 yields

lim
�→0

[log T(�)] = lim
�→0

(

log
k

√
1 + �2� 2

)

= log k. (12.40)

π
2−

30

20

|T|

10

M
ag

n
it

u
d
e

9

8

7

0

k

φT

π
4−

1 1/τ2 4 5 6 7 8 9 10

ω, rad/s

Asymptotes

45°

Asymptote

Figure 12.5. Amplitude and phase curves for the Bode diagram called for in Example 12.2.

310 Frequency Analysis

The second asymptote for the amplitude curve is based on the case in which � is

very large. Using Equation (12.35) with � approaching infinity yields

lim
�→∞

[log T(�)] = lim
�→∞

(

log
k

√
1 + �2� 2

)

= log k − log ��. (12.41)

Hence, at high frequencies,

log[T(�)] = log k − log � − log �. (12.42)

Note that the slope of the second asymptote on log–log paper is −45◦, which

corresponds to −6 dB per octave on the decibel plot.

The two asymptotes described by Eqs. (12.40) and (12.42) thus constitute the

asymptotic magnitude versus frequency characteristic. The maximum error incurred

by use of the asymptotic approximation occurs at the “break frequency” where � =
1/� , i.e., where the two asymptotes intersect – sometimes also referred to as the

“corner frequency.”

The asymptotic approximation for the phase angle curve consists of three straight

lines. The first, for very low frequency, is given by

lim
�→∞

[− tan−1(��)] = − tan−1(0) = 0. (12.43)

The second is a straight-line tangent to the phase angle curve at its corner frequency,

having a slope given by

d�T(�)

d(log �)
=

d�T(�)

d�

d�

d(log �)
= −

��

1 + �2� 2
. (12.44)

Thus, at the corner frequency � = 1/� , the phase angle is −45◦ and the slope is given

by

d�T(�)

d(log �)

∣

∣

∣

∣

�=1/�

= −1/2. (12.45)

The third asymptotic approximation occurs at very large values of �, where

lim
�→∞

[tan−1(��)] = − tan−1(∞) = −�/2. (12.46)

It can be seen in Fig. 12.5 that the system behaves as a low-pass filter, having

an output that drops off increasingly as the corner frequency is exceeded. Thus the

system is unable to respond at all as the frequency approaches infinity. The range of

frequencies over which this system can deliver an effective output is referred to as

its bandwidth; the bandwidth of a low-pass filter extends from a very low frequency

up to its corner frequency, where the output has dropped to about 0.7 of its low-

frequency value. Thus the bandwidth is determined by the value of 1/� ; the smaller

the time constant � , the larger the bandwidth.

This means that the bandwidth needs to be large enough (i.e., the time constant

small enough) to enable the output to follow the input without excessive attenuation.

However, providing extended bandwidth not only is costly but also makes it possible

12.3. Bode Diagrams 311

for the system to follow undesirable high-frequency noise in its input. These con-

flicting requirements necessitate either some compromise in the use of this system

or selection of a better (probably higher-order) system that will follow the desired

range of input frequencies but filter out the undesired higher-frequency noise.

Example 12.3 is provided to reinforce the use of the required analytical proce-

dures and to demonstrate how a higher-order system might be devised to help meet

these conflicting design requirements.

EXAMPLE 12.3

Prepare Bode diagram curves for the second-order system described by

d2 y

dt2
+ 2��n

dy

dt
+ �2

n y = �2
nx. (12.47)

Step 1. The system transfer function is

T(s) =
Y(s)

X(s)
=

�2
n

s2 + 2��ns + �2
n

. (12.48)

Step 2. The sinusoidal transfer function is

T(j�) =
�2

n

(j�)2 + 2��n j� + �2
n

=
1

1 − (�/�n)2 + j2�(�/�n)
. (12.49)

Step 3. Develop expressions for T(�) and �T(�). First, the magnitude is

T(�) =
1

√

[1 − (�/�n)2]2 + 4� 2(�/�n)2
. (12.50)

Then the phase angle is

�T(�) = − tan−1 2�(�/�n)

1 − (�/�n)2
. (12.51)

Step 4. Prepare the Bode diagram curves, as shown in Fig. 12.6.

In Example 12.3, a normalized frequency scale based on (�/�n) has been used so

that the frequency response of underdamped (� < 1) linear systems can be empha-

sized. For overdamped second-order systems, the characteristic equation has real

roots, and two first-order terms are used. The procedure is given in Example 12.4.

Note that the slope of the high-frequency straight-line approximation is now −2 on

the log–log plot (−12 dB per octave on the decibel plot), the high-frequency phase

angle is −180◦, and the corner frequency phase angle is −90◦.

312 Frequency Analysis

1.0

0.5

lo
g

1
0
T

(ω
)

φ
T

ω/ωn

0

−0.5

0°

−π
2

−π
0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 10

ζ = 0.1

ζ = 0.2

ζ = 0.3

ζ = 0.5

ζ = 0.7

ζ = 1.0

ζ = 0.1

ζ = 0.2

ζ = 0.3

ζ = 0.5

ζ = 0.7

ζ = 1.0

Asymptotes

Figure 12.6. Bode diagram magnitude and phase curves for the underdamped second-order system
described in Example 12.3.

EXAMPLE 12.4

Prepare asymptotic magnitude and phase characteristics for the system having the fol-

lowing transfer function: .

T(s) =
b1s + b0

s(a2s2 + a1s + a0)
. (12.52)

SOLUTION

The numerator has a single root r = −(b0/b1) so that its time constant is

�1 = −(1/r) = (b1/b0).

The denominator has three roots, or poles, p1, p2, and p3, with p1 = 0. Assum-

ing that the second-order factor in the denominator is overdamped (in contrast to the

underdamped case in Example 12.3), the damping ratio � = a1/2
√

a0a2 is greater than 1.

Thus the poles associated with this second-order factor are real, and the factor may

be expressed in terms of its time constants � 2 and � 3:

a2s2 + a1s + a0 = a0(�2s + 1)(�3s + 1),

12.3. Bode Diagrams 313

where

�2 = −
1

p2
=

a1

2a0

(

1 +

√

1 −
4a0a2

a2
1

)

,

�3 = −
1

p3
=

a1

2a0

(

1 −

√

1 −
4a0a2

a2
1

)

.

Therefore the transfer function may be written as

T(s) =
b0

a0

(�1s + 1)

s(�2s + 1)(�3s + 1)
, (12.53)

and the sinusoidal transfer function is

T(j�) =
b0

a0

(j��1 + 1)

j�(j��2 + 1)(j��3 + 1)
, (12.54)

which can be expressed in terms of five individual transfer functions:

T(j�) =
N1(j�)N2(j�)

D1(j�)D2(j�)D3(j�)
, (12.55)

where N1 = b0/a0, N2 = j�� 1 + 1, D1 = j�, D2 = j�� 2 + 1, and D3 = j�� 3 + 1.

Now, the individual magnitudes and phase angles may be used to obtain

T(j�) =
N1(�)e j�N1 N2(�)e j�N2

D1(�)e j�D1 D2(�)e j�D2 D3(�)e j�D3

,

or

T(j�) =
N1 N2

D1 D2 D3
e j(�N1

+�N2
−�D1

−�D2
−�D3

). (12.56)

The magnitude of the overall transfer function is

T(�) =
N1(�)N2(�)

D1(�)D2(�)D3(�)
, (12.57)

where N1 = b0/a0, N2 =
√

�2� 2
1 + 1, D1 = �, D2 =

√

�2� 2
2 + 1, and D3 =

√

�2� 2
3 + 1, and

the phase angle of the overall transfer function is

�T = �N1
+ �N2

− �D1
− �D2

− �D3
, (12.58)

where �N1
= 0, �N1

= tan−1(��1), �D1
= �/2, �D2

= tan−1(��2), and �D3
= tan−1(��3).

The magnitude and phase curves for the overall transfer function are then prepared

by summation of the ordinates of the individual transfer functions, by use of the straight-

line asymptotic approximations developed earlier. Usually the small departures at the

corner frequencies are not of interest and thus can be ignored. Also, it is very easy to

implement these procedures on a digital computer and use an x–y plotter to bypass a lot

of tedious calculation and plotting by hand, in which case the results will be accurate at

all frequencies.

The magnitude and phase curves obtained with straight-line asymptotic approxima-

tions are presented in Fig. 12.7, where � 1 > � 2 > � 3.

The preceding examples show how a general picture of the frequency response of

even complicated systems can be easily sketched with just a few computations. On the

314 Frequency Analysis

π
2−

b0
a0

T(ω)

N1

N2

D3

D2
D1

10.0

5.0

2.0

1.0

0.8
0.6
0.5

0.4

0.3

φT

−φD3
−φD2

−φD1

φN2

−π

π
2

ω, rad/s

P
h
as

e,
 φ

T
M

ag
n
it

u
d
e,

 |T
|

1.0 2.0 5.0 10 50 100 200 500 1000

0

Figure 12.7. Bode diagram characteristics for magnitude and phase of the system in Example 12.4.

other hand, simple spreadsheet applications can be used to develop highly accurate

plots with minimal effort. Also, specialized programs such as MATLAB allow the

user to develop very accurate plots with single commands, as will be demonstrated

in Section 12.6.

12.4 RELATIONSHIP BETWEEN TIME RESPONSE AND FREQUENCY RESPONSE

Chapter 11 introduced the concept of a transfer function based on the particular

solution of a linear time-invariant model to an input that can be represented as a

complex exponential. In this chapter, the idea is refined to focus on those inputs that

are sinusoids. In this section, the relationship between the frequency response and

the sinusoidal response is discussed.

Figure 12.6 shows a family of frequency-response curves for a second-order

system having a transfer function given by Eq. (12.48). This discussion will be greatly

simplified if one specific curve is used. Figure 12.8 shows a Bode diagram for a second-

order system with a natural frequency �n of 1.0 rad/s and a damping ratio � of 0.2.

Vertical lines are drawn on the plot at three frequencies, 0.2, 1.0, and 5.0 rad/s.

Table 12.1 summarizes frequency-response data at the highlighted frequencies

as extracted from the plot. Recall that the decibel scale is 20 × log10 of the magnitude.

Extracting the magnitude from the decibel reading is the inverse (divide by 20, raise

10 to the power of the result.)

12.4. Relationship between Time Response and Frequency Response 315

10

0

−10

−20

M
ag

n
it

u
d
e

(d
B

)
P

h
as

e
(d

eg
)

−30

−40

−45

−90

−135

−180

10−1 100

Frequency (rad/s)

1.0 rad/s0.2 rad/s 5.0 rad/s

101

0

Figure 12.8. Frequency response for second-order system.

In light of the discussion in Section 12.2, these numbers can be interpreted as

follows. If the system represented by the transfer function is driven by a sinusoidal

input of unity magnitude and zero phase, at a frequency of 0.2 rad/s, the steady-

state output of the system (after response to initial conditions has died out) will be

a sinusoidal signal of the same frequency (0.2 rad/s), with a magnitude of 1.06 (just

slightly larger) and lagging behind the input signal by 5◦. Figure 12.9 shows the input

and output sinusoids at this frequency.

Similarly, at a driving frequency of 1.0 rad/s (corresponding to the system natural

frequency), the steady-state output will be 2.5 times as large as the input and will lag

behind the input by 90◦ (1/4 of a cycle of the sine wave). Figure 12.10 illustrates this

case.

Finally, at a driving frequency of 5.0 rad/s, the table indicates that the output will

be very small (0.04) and will be nearly 180◦ out of phase with the input, as seen in

Fig. 12.11.

Table 12.1. Frequency-response magnitude and phase angle

Frequency (rad/s) Magnitude (dB) Magnitude Phase (deg)

0.2 0.5 1.06 −5
1.0 8.0 2.5 −90
5.0 −27 0.04 −175

316 Frequency Analysis

1.5

1

0.5

−0.5

−1

−1.5
0 5 10 15 20

time (s)

m
a

g
n

it
u

d
e

25 30 35 40

0

Output

Input

Figure 12.9. Input and output signals when the driving frequency is lower than the natural frequency.

Output

Input

0
−2.5

−2

−1.5

−1

−0.5

0

m
a
g
n

it
u

d
e

0.5

1

1.5

2

2.5

1 2 3 4

time (s)

5 6 7 8

Figure 12.10. Input and output signals when the driving frequency is the same as the natural fre-
quency.

12.5. Polar Plot Diagrams 317

1

0.8

0.6

0.4

0.2

m
a

g
n

it
u

d
e

0

−0.2

−0.4

−0.6

−0.8

−1
0 0.2 0.4 0.6 0.8 1

time (s)

1.2 1.4 1.6 1.8 2

Input

Output

Figure 12.11. Input and output signals for frequencies much higher than the natural frequency.

Thus, given the system frequency response, whether derived analytically by

methods presented in this chapter or discovered experimentally through repeti-

tive measurements, the system response to a sinusoidal input or, by use of super-

position, any periodic input can be computed by the technique illustrated in this

section.

12.5 POLAR PLOT DIAGRAMS

In Section 12.3, the magnitude T(�) and phase angle �T(�) characteristics of the

frequency-response transfer function T(j�) were depicted by separate curves on

a Bode diagram. Because each of these characteristics is a unique function of

frequency �, they are also directly related to each other. This relationship was

expressed earlier by Eq. (12.13), which showed how the transfer function T(j�)

may be represented on the complex plane, in either Cartesian or polar coordinates.

Figure 12.2 illustrates how T(j�) at a given frequency � appears on the complex

plane. Note that this method of representing T(j�) does not show the frequency

explicitly.

The end points of the vectors T(j�) plotted for successive values of � from zero

to infinity form the basis of a characteristic curve called the polar plot. This form

of representing T(j�) has proved to be very useful in the development of system

stability theory and in the experimental evaluation and design of closed-loop control

systems.

318 Frequency Analysis

EXAMPLE 12.5

Prepare a polar plot for a first-order system having the system transfer function

T(s) =
10

2s + 1
. (12.59)

The frequency-response transfer function is

T(j�) =
10

2 j� + 1
. (12.60)

On the one hand, the polar plot represents graphically the relationship between the

magnitude T(�) and the phase angle �T(�); on the other hand, it shows the relationship

between the real part T cos �T and the imaginary part T sin �T of the transfer function

T(j�). When the latter is chosen, the expressions for the real and imaginary parts of T(j�)

are found to be

Re[T(j�)] =
10

4�2 + 1
, (12.61)

Im[T(j�)] = −
20�

4�2 + 1
. (12.62)

The numerical results for computations carried out at several frequencies are given

in Table 12.2, which also includes corresponding values of T(�) and �T(�). The polar

plot prepared from Table 12.2 is shown in Fig. 12.12. It can be shown analytically that this

curve is a semicircle with its center at the 5.0 point on the real axis.

Note that the sign convention for phase angle is counterclockwise positive. Thus the

phase angle �T(�) for this system is always negative. Although each computed point

for this polar plot corresponds to a certain frequency, the frequency � does not appear

explicitly as an independent variable (unless successive tick marks are labeled for the

curve, as was done in Fig. 12.12).

For complicated transfer functions, the process for computing the values of the data

points is straightforward but becomes tedious. The next section shows how MATLAB

easily generates both Bode diagrams and polar plots with a few simple commands.

Polar plot diagrams display most of the same information as Bode diagrams, espe-

cially if the frequency tick marks are included, but in a more compact form. Although they

are not as easy to sketch by hand as the straight-line asymptotes of the Bode diagrams,

they are especially useful in determining the stability of feedback control systems, which

are discussed in Chap 13.

Table 12.2. Numerical data for plot of T(j�) = 10/(2 j� + 1)

� (rad/s) 0.0 0.1 0.25 0.5 1.0 5.0 10.0 . . . ∞

Re [T(j�)] 10 9.62 8.0 5.0 2.0 0.10 0.025 . . . 0
Im [T(j�)] 0 −1.92 −4.0 −5.0 −4.0 −1.0 −0.5 . . . 0
T(�) 10 9.8 8.94 7.07 4.47 1.0 0.5 . . . 0
�T(�), deg 0 −11.3 −26.6 −45.0 −63.4 −84.3 −87.1 . . . −90

12.6. Frequency-Domain Analysis with MATLAB 319

2 4 6 8 10

Re [T(jω)]−1

−2

−3

−4

−5
2
τ

3
τ

1
τ 1

2τ
ω =

Im[T(jω)]

Figure 12.12. Polar plot for T(j�) = 10/(2j� + 1).

A few comments and hints are in order here to aid in the preparation and/or

verification (especially with computer-generated data) of polar plots. First, the points

for zero frequency and infinite frequency are readily determined. The point for zero

frequency is obtained by use of � = 0 in T(j�). The point for infinite frequency

is always at the origin because of the inability of real physical systems to have any

response to very high frequencies. Stated mathematically,

lim
�→∞

T(j�) = 0. (12.63)

Second, as the frequency approaches infinity, the terminal phase angle is (�/2)

(m − n), where m is the order of the numerator and n is the order of the denominator

(assuming that the transfer function is a ratio of polynomials). For example, if

T(s) =
b0 + b1s + · · · + bmsm

a0 + a1s + · · · + ansn
, m ≤ n,

the limit of the phase angle for frequency approaching infinity is given by

lim
�→∞

�T(�) = (m − n)
�

2
. (12.64)

Suggestion: Use this rule to check the validity of the curve shown in Fig. 12.12.

12.6 FREQUENCY-DOMAIN ANALYSIS WITH MATLAB

In Section 11.7, MATLAB’s ability to store and manipulate transfer functions as

objects in the workspace was presented. In this section, a set of tools is discussed

that greatly simplifies the numerical operations and graphical presentations that are

presented in this chapter.

12.6.1 Complex Numbers and MATLAB

A fundamental concept throughout the discussion of frequency-domain tools is that

of the complex number. MATLAB can manipulate complex numbers easily and

efficiently. Unlike this text, MATLAB’s convention for the square root of −1 is i.

Therefore, to enter a complex number into the workspace, use i as a symbol:

>> mynum=2+5*i

mynum =

2.0000 + 5.0000 i

320 Frequency Analysis

MATLAB’S built-in functions abs and angle allow both the magnitude and

angle of complex numbers to be easily computed:

>> abs(mynum)

ans =

5.3852

>> angle(mynum)

ans =

1.1903

12.6.2 Frequency Response and Transfer Function Evaluation

Section 12.3 described the process by which the sinusoidal transfer function can be

manipulated to find the magnitude of the transfer function, T(�), and the phase

angle �T(�) for various values of driving frequency �. Because the complete pic-

ture requires a large number of evaluations, computer methods are strongly indi-

cated. MATLAB’s Control Systems Toolbox provides four routines that operate on

transfer function objects and perform the complex number evaluations required for

interpreting these objects. Section 11.7 and Appendix 3 discuss the manner in which

MATLAB represents transfer functions as a single data structure, the TF object.

Table 12.3 summarizes the four routines that can manipulate these TF objects to

evaluate and graph frequency-response data.

The following example illustrates the use of these commands.

EXAMPLE 12.6

For this example, use the transfer function introduced in Example 12.5:

T(s) =
10

2s + 1
.

Table 12.3. Summary of MATLAB sinusoidal transfer-function-related commands

Syntax Description Returns Comments

R=Evalfr
(sys, w)

Evaluates frequency
response of a TF object
for a single frequency w

Single complex
number that is the
value of the TF at
frequency w

Appropriate for
quickly checking
the response at one
or a few frequencies

H= Freqresp
(sys, w)

Evaluates the
frequency response of a
TF object over a grid of
frequencies (contained
in the vector w)

A vector of complex
numbers (H) that are
the TF evaluated at
each frequency
contained in w

Generates the
response for a range
of user-specified
frequencies

Bode(sys) Plots the Bode plot of a
TF object.

Can return the Bode
data (see help)

Generates the Bode
plot

Nyquist(sys) Plots a polar (Nyquist)
frequency-response plot
of the TF object

Can return response
data (see help)

Generates the polar
frequency-response
plot

12.6. Frequency Domain Analysis with MATLAB 321

First, enter the transfer function as a TF object:

>>extf = tf([10], [2 1])

Transfer function:

10

2s+1

Use the evalfr command to verify entries in Table 12.2 for a frequency of 0.25

rad/s.

>>evalfr(extf, 0.25*i)

ans =

8.0000 — 4.0000i

Note that the frequency passed to the function is specified as an imaginary number.

This is consistent with the interpretation that the sinusoidal transfer function is found by

substituting s = j�. Note also that the result is the same that can be found in Table 12.2

for a frequency of 0.25 rad/s.

Now, use the freqresp function to generate the entire table with a single compu-

tation. The first step is to build a vector of frequencies:

>>wex = i*[0 .1 .25 .5 1 5 10 1000]

Use the function to generate the response:

>>h=freqresp(extf,wex)

It is left to the reader to verify that the results correspond to the entries previously

presented in Table 12.2.

12.6.3 Bode and Nyquist Plots of Frequency Response

Sections 12.3 and 12.5 described in some detail the graphical representation of the

frequency response for a transfer functions in form of Bode diagrams or Nyquist

plots.

Both the Bode and Nyquist plots are generated by MATLAB with a single

command:

>>bode(extf)

results in the Bode diagram seen in Fig. 12.13.

Similarly,

>>nyquist(extf)

generates the polar plot seen in Fig 12.14. When comparing Figs. 12.12 and 12.14, it

should be noted that the MATLAB-generated plot shows a complete circle, whereas

the polar plot generated in Fig 12.12 shows just the lower half. The difference lies in

the fact that a Nyquist plot is a polar plot for both positive and negative frequencies.

Although a negative frequency has no physical interpretation, the mathematics of

complex analysis is such that the inclusion of negative frequencies allows for a more

comprehensive analysis. This topic will be treated in greater detail in Chap. 13.

322 Frequency Analysis

20

15

10

5

M
ag

n
it

u
d
e

(d
B

)

−5

0

−10

Bode Diagram

0

−45

P
h
as

e
(d

eg
)

−90

10−2 10−1

Frequency (rad/s)

100 101

Figure 12.13. Bode plot of the transfer function in Example 12.5.

0

−1

−2

−3

−4

−5
−2 20 4 6 8 10

1

2

3

4

5

Nyquist Diagram

Im
a
g
in

a
ry

 A
x
is

Real Axis

Figure 12.14. Nyquist diagram for the transfer function in Example 12.5.

Problems 12.1–12.3 323

12.7 SYNOPSIS

The concept of using a transfer function to describe a linear system was applied

in this chapter to systems subjected to steady sinusoidal inputs through the use of

s = j�. The steady-state output Ye j�t of a linear system is the product of the input

expressed by Ue j�t multiplied by the sinusoidal transfer function T(j�). Because the

phase of the input � U is usually zero, U = U and thus the phase angle of the output
� Y is equal to the phase angle of the transfer function � T(j�). Thus, when the input

is a sine wave, u(t) = Im [Uej�t] = U sin �t, the output is a phase-shifted sine wave

of the same frequency, y(t) = Im [Ye(j�t + �)] = Y sin(�t + �), where Y = U|T(j�)|

and � = � Y = � T(j�).

Two techniques for graphing the variation of the transfer function T(j�) with

varying frequency � were introduced: (a) Bode diagrams showing amplitude and

phase versus frequency on separate plots and (b) polar plots showing amplitude and

phase in a single plot.

Several rules were provided to assist in the routine preparation of frequency-

response characteristics, and examples were given to illustrate the techniques

involved. Finally the use of specialized MATLAB functions to generate Bode dia-

grams and Nyquist plots was demonstrated.

The frequency-response methods presented in this chapter are very useful in

studying stability and dynamic response characteristics of automatic control systems.

They are also commonly used in marketing and in specifying products for use in

industry.

PROBLEMS

12.1 Sketch asymptotic Bode diagrams for the following transfer functions:

(a) T(s) = k/s,

(b) T(s) = k/[s(�s + 1)],

(c) T(s) = ks/(�s + 1),

(d) T(s) = k/(�s+ 1)2,

(e) T(s) = k(� 1s+1)/[s(� 2s + 1)],

(f) T(s) = 10s(0.1s + 1)/(s + 1)2,

12.2 Sketch polar plots for the following transfer functions:

(a) T(s) = k/s,

(b) T(s) = k/[s(�s + 1)],

(c) T(s) = �2
n/(s2 +2� �ns + �2

n),

(d) T(s) = ke−s�o ,

(e) T(s) = (s + 1)/([s + 2)(s + 5)],

(f) T(s) = 100/[s(s + 5)(s + 10)],

12.3 The Bode diagrams and the polar plot for the same system are shown in Fig. P12.3.

(a) Use the Bode diagrams to find the values of the frequencies �� and �g marked on

the polar plot.

(b) Find the value of the static gain k.

324 Frequency Analysis

−180Ο

−90Ο

0

Φ
T

|T
|,

d
B

−5.0

5.0

0.1 1.0 10.0 100.0 1000.0

0

(b)

(a)

1

ωΦ

ωg

Re[T(jω)]

Im[T(jω)]

Frequency, rad/s

Figure P12.3. Polar plot and Bode diagrams for Problem 12.3.

12.4 A given system input–output equation is

a2
d2 y

dt2
+ a1

dy

dt
+ a0 y = b2

d2u

dt2
+ b1

du

dt
+ b0u.

Find the expression for the output y(t) when the input is a sinusoidal function of time,

u(t) = U sin � f t with � f = (a0/a2)0.5.

12.5 The detailed transfer function block diagram of a certain second-order system is

shown in Fig. P12.5. The values of the system parameters are

a11 = −0.1 s−1, a12 = −4.0 N/m3,

a21 = 2.0 m3/N s2, a22 = 0,

b11 = 35.0 N/m2 s.

(a) Find the system transfer function T(s) = Y(s)/U(s).

Problems 12.5–12.7 325

(b) Find the amplitude A0 and phase � of the output y(t) when the input is u(t) = 0.001

sin 1.5 when the input is u(t) = 0.001 sin 1.5t .

U(s) Y(s)b11 a21

a22

a12

a11

+ + +

++
1/s 1/s

Figure P12.5. Transfer function block diagram for Problem 12.5.

12.6 In a buffer tank, shown in Fig. P12.6, the input flow rate Qi (t) has a con-

stant component equal to 0.5 m3/s, an incremental sinusoidal component of amplitude

0.1 m3/s, and a frequency of 0.4 rad/s. The density of the liquid is � = 1000 kg/m3; the

output flow conditions are assumed to be linear, with hydraulic resistance RL = 39,240 N

s/m5.

(a) Write the state-variable equation for this system using a liquid height in the tank of

h(t) as the state variable.

(b) Find the average liquid height in the tank, h̄.

(c) Determine the condition for the cross-sectional area of the tank necessary to limit

the amplitude of liquid height oscillations, as a result of sinusoidal oscillations in the

input flow rate, to less than 0.2 m.

(d) What will be the time delay between the peaks of the sinusoidal input flow rate and

the corresponding peaks of the liquid height if the cross-sectional area of the tank is

A = 1 m2?

(e) Find the expression for the output flow rate QL(t) for A = 1 m2.

h

Qi

QL
Pa

RL

p, C, Pt

Figure P12.6. Buffer tank considered in Problem
12.6.

12.7 A closed-loop system consisting of a process of transfer function Tp(s) and a con-

troller of transfer function Tc(s) has been modeled as shown by the transfer function

block diagram in Fig. P12.7, where

Tp(s) =
5

5s + 1
, Tc(s) =

2(s + 1)

(2s + 1)
.

(a) Find the system closed-loop transfer funtion TCL(s).

(b) Find the amplitude and the phase angle of the output signal of the closed-loop system,

y(t), when u(t) = 0.2 sin 3t.

326 Frequency Analysis

U(s) TC(s) TP(s) Y(s)
+

−
Figure P12.7. Block diagram of the system
considered in Problem 12.7.

12.8 A hot-water storage tank has been modeled by the equation

8000
dTw

dt
= 3Ta − 3Tw,

where Tw is the temperature of the water and Ta is the temperature of the ambient air. For

several days, the ambient air temperature has been varying in a sinusoidal fashion from

a maximum of 10 ◦C at noon to a minimum of –10 ◦C at midnight of each day. Determine

the maximum and minimum temperatures of the water in the storage tank during those

days and find at what times of the day the maximum and minimum temperatures have

occurred.

12.9 Figure P12.9 is a schematic of an ecological water system in Alaska. A small river

with a steady flow rate of 0.05 m3/s flows through two mountain reservoirs. The hydraulic

capacitance of the top reservoir is C1 = 0.02 m5/N. The resistances to flow between the

reservoirs are R1 = R2 = 400,000 N s/m5. The bottom reservoir is cylindrical in shape

with cross-sectional area A2 = 200 m2 and depth h2 = 2.5 m.

h1

h2

Qfi

C1, P1

R1

C2, P2

R

Q

2

fo

Figure P12.9. Schematic of an ecological water system.

(a) Derive the state-variable equations for the system. Use water heights in the two

reservoirs, h1 and h2, as the state variables.

(b) Show that, under the current conditions, that is, when Q f i = 0.05 m3/s = const, the

size of the bottom reservoir is sufficient to prevent flooding of a nearby town.

(c) It is anticipated that in the future, as a result of global warming, a large iceberg near

the top reservoir may start melting, producing an additional water flow rate in the

river flowing by. It is estimated that the additional flow rate would by sinusoidal

with an average value of 0.02 m3/s and an amplitude of 0.01 m3/s. The period of

sinusoidal oscillations would be 24 h. What is the minimum depth of the bottom

reservoir necessary to prevent flooding if these predictions are accurate?

Problems 12.10–12.14 327

12.10 Use MATLAB’S bode and nyquist commands to plot both Bode diagrams and

polar plots for the following transfer functions:

(a) T(s) =
2

s
,

(b) T(s) =
1

s(5s + 1)
,

(c) T(s) =
10s

(2s + 1)
,

(d) T(s) =
6

(5s + 1)2
,

(e) T(s) =
2(5s + 1)

s(0.2s + 1)
,

(f) T(s) =
10s(0.1s + 1)

(s + 1)2
,

12.11 Use MATLAB to solve for the frequency response of the system in Fig. P12.5 for

the following frequencies: 0.5, 1.0, 1.5, 2.0, 3.0, and 5.0 rad/s.

12.12 For the system described in Problem 12.7, consider the following change for the

controller transfer functions:

Tc(s)
K(s + 1)

(2s + 1)

where K is a design parameter. Find the value of K that satisfies the following condition:

The frequency at which the magnitude of the response falls below unity (1.0, or 0 dB) is

as high as possible but less than the frequency at which the phase angle becomes more

negative than −180◦.

12.13 Consider the linearized model of the field-controlled dc motor considered in Prob-

lem 10.4 and shown in Fig. P10.4. The input field voltage is subject to low-frequency sinu-

soidal noise, ê f = 10 sin(�t). Determine the sensitivity of the output �1 to the noise as

follows:

(a) Derive the transfer function of the linearized model using ê f as input and �1 as the

output.

(b) Compute the magnitude of the transfer function for the following frequencies: 0.1,

0.3, and 1.5 rad/s. For which noise frequency is the system most sensitive?

(c) Find the poles of the transfer function. How many peaks does the plot of the magni-

tude of the transfer function have? At what frequencies?

(d) Use MATLAB to obtain plots of the magnitude of the transfer function to verify

your responses in part (c).

12.14 Consider the frequency response of the open-loop system shown in Fig. P12.14.

(a) Determine the system response to the following inputs:

(1) u(t) = 5.0,

(2) u(t) = sin(0.1t),

(3) u(t) = sin(1.0t),

(4) u(t) = sin(10t),

(5) u(t) = sin(10000t),

328 Frequency Analysis

Bode Diagram
20

0

−20

M
ag

n
it

u
d
e

(d
B

)
P

h
as

e
(d

eg
)

−40

−60

−80

−100

−90

−180

−270

10−2 10−1 100 101

Frequency (rad/s)

102 103 104

0

90

Figure P12.14. Frequency response of system in Problem 12.14.

(b) If the input u(t) is a triangle wave between 0 and 1 with a period of 0.0021 s, sketch

the response of the system as best you can.

(c) Write down everything you can deduce about the system by observing the Bode plot.

13

Closed-Loop Systems

and System Stability

LEARNING OBJECTIVES FOR THIS CHAPTER

13–1 To understand the concept of system stability and its implication for dynamic

feedback systems.

13–2 To apply algebraic stability criteria for linear dynamic models.

13–3 To apply frequency-domain stability criteria for linear dynamic models.

13–4 To assess relative stability of linear dynamic systems by using phase margin

and gain margin.

13–5 To plot and interpret the root locus of linear dynamic systems.

13.1 INTRODUCTION

Up to this point, the modeling and analysis in this text have dealt mainly with systems

resulting from the straightforward interconnection of A-type, T-type, and D-type ele-

ments together with energy-converting transducers. The graphical representation of

these system models by use of simulation block diagrams has revealed the widespread

natural occurrence of closed loops containing one or more integrators, each loop of

which involves feedback to a summing point. The techniques of analysis used so far

with these passive systems have led to descriptions of their dynamic characteristics by

means of sets of state-variable equations and/or input–output differential equations

and transfer functions. These systems are considered passive because no attempts

have been made intentionally to close additional loops with signal-amplifying or

signal-modifying devices. They are simply collections of naturally occurring phe-

nomena that, to be naturally occurring, must be inherently stable in order to survive.

A system is considered stable if the following circumstances apply:

(a) The system remains in equilibrium at a steady normal operating point when left

undisturbed – in other words, after all transients resulting from previous inputs

have died out.

(b) It responds with finite variations of all of its state variables when forced by a

finite disturbance.

(c) It regains equilibrium at a steady operating point after the transient response

to a step or pulse input has decayed to zero; or its state variables vary cyclically

about steady operating-point values when the input varies cyclically about a

steady normal operating-point value (as, for instance, a system responding to a

sinusoidal input variation about a constant value).

329

330 Closed-Loop Systems and System Stability

The intentional use of feedback in industrial systems seems to have started in

the latter part of the 18th century, when James Watt devised a flyweight governor to

sense the speed of a steam engine and use it as a negative feedback to control the

flow of steam to the engine, thereby controlling the speed of the engine. It was almost

100 years later that James Clerk Maxwell modeled and analyzed such a system in a

celebrated paper presented to the Royal Society in 1868. Since that time, inventors,

engineers, and scientists have increasingly used sensors and negative feedback1 to

improve system performance, to improve control of the quality of products, and

to improve rates of production in industry. And in many instances, the hardware

preceded the modeling and analysis. Thus the use of ingenuity in design and the

use of physical reasoning have been very important factors in the development of

the field of automatic control. These factors, when combined with the techniques

of modeling and analysis, have made it possible to propose new concepts and to

evaluate them before trying to build and test them, thereby saving time, effort, and

money.

The use of negative feedback to control a passive system results in an active sys-

tem that has dynamic characteristics for which maintaining stability may be a serious

problem. The improved system traits resulting from intentional use of negative-

feedback control, such as faster response and decreased sensitivity to loading effects,

will be discussed in Chap. 14.

The following example of a very commonly encountered feedback control sys-

tem, a biomechanical system consisting of an automobile and driver, may be helpful

in gaining an understanding of the way in which negative feedback can affect system

stability.

Consider the process of steering an automobile along a straight stretch of open

road with strong gusts of wind blowing normal to the direction of the roadway. The

driver observes the deviation of the heading of the automobile relative to the roadway

as the wind gusts deflect the heading, and the driver then manipulates the steering

wheel in such a way as to reduce the deviation, keeping the automobile on the road.

A simplified block-diagram model of this system is shown in Fig. 13.1.

The desired input signal represents the direction of the roadway, and the output

signal represents the heading of the automobile as it proceeds along the highway. Both

signals are processed as the human visual system and brain seem to process them –

that is, they are compared with the effects of the heading signal acting negatively with

respect to the road direction signal. This perceived deviation is acted on by the brain

and nervous system so as to generate a motion by the hands on the steering wheel

that causes the automobile to change its heading, thereby reducing the deviation of

the automobile heading from the road direction.

Barring extreme weather conditions and excessively high speed of the vehicle,

this negative feedback by a human controller works well in the hands of moderately

skilled but calm drivers. However, if a driver becomes nervous and overreacts to

the wind gusts, the deviations of the vehicle heading from the road direction may

1 Positive feedback is seldom used because in most cases its use leads to degradation of system perfor-

mance.

13.1. Introduction 331

Visual

senses

Visual

senses

Hands Automobile

Automobile

headingDecision

making

(brain)

Direction

of road

Input

summing

point

(brain)

perceived

deviation

Driver

+ −

Wind

gusts

Figure 13.1. Simplified block diagram of the driver–automobile feedback system.

become excessive, possibly causing the vehicle to leave the road or, even worse, to

collide with another vehicle.

This example illustrates the common everyday use of negative feedback based

on a simplified model of the sensory and control capabilities of a human operator

and illustrates how inappropriate feedback can lead to system instability. (A more

complex model of the human operator has shown that an experienced driver does

more than simply observe the heading of the vehicle relative to the road and that the

control capability of such a driver is tempered by experience and the ability to make

rapid adjustments to unusual situations – for instance, to sense the incipient effects

of wind gusts before the vehicle responds to them.)

There is a persistent problem with stability that is likely to arise when feedback

is intentionally used to produce closed-loop or automatic control, a problem that

seldom occurs with passive, open-loop systems. Designing a system that will remain

stable while achieving desired speed of response and reduction of errors constitutes

a problem of major importance in the development of automatic control systems.

This chapter presents basic methods for the analysis of stability of linear dynamic

systems. Analysis of the stability of nonlinear systems is beyond the scope of this

text. In Section 13.2, basic definitions related to stability analysis are introduced and

general conditions for stability of linear systems are formulated. The next two sections

are devoted to analytical methods for determining the stability of dynamic systems

having zero inputs. In Section 13.3, algebraic stability criteria are presented, including

the Hurwitz and Routh methods. The algebraic stability criteria are very simple and

easy to use, but their applicability is limited to systems whose mathematical models

are known. The Nyquist criterion described in Section 13.4 can be applied to closed-

loop control systems whose open-loop frequency characteristics are known, either

in an analytical form or in the form of sets of experimentally acquired frequency-

response data. In Section 13.5, gain and phase margins for stability are introduced.

A brief outline of the root-locus method, a very powerful tool in analysis and design

of feedback systems, is given in Section 13.6.

Finally, Section 13.7 presents the MATLAB tools that automate both the com-

putation of relative stability characteristics and the creation of root-locus plots.

332 Closed-Loop Systems and System Stability

Unstable

Stable

x2

x0

x1

Asymptotically

stable

δ

ε

Figure 13.2. Illustration of stability in the
sense of Lyapunov.

13.2 BASIC DEFINITIONS AND TERMINOLOGY

A linear system is commonly considered to be stable if its response meets the con-

ditions listed in Section 13.1. Although this definition is intuitively correct, a much

more precise definition of stability was proposed by Lyapunov. To explain Lyapunov’s

definition of stability, consider a dynamic system described by the state equation

q̇ = Aq + Bu, (13.1)

where q is a state vector, A is a system matrix, u is an input vector, and B is an input

matrix. The system described by this vector equation is stable in the sense of Lyapunov

under the following conditions: For a given initial state q0 inside a hypersphere �,

there exists another hypersphere � such that, if the input vector is zero, u = 0, the

system will always remain in the hypersphere �. Figure 13.2 illustrates the Lyapunov

definition of stability for a two-dimensional system. In this case, a dynamic system is

considered stable if, for initial conditions inside the area �, there exists an area � such

that the system will never move outside this area as long as the input signal is zero.

A term stronger than stability is asymptotic stability. A dynamic system described

by Eq. (13.1) is asymptotically stable in the sense of Lyapunov if, for any initial state

q0 inside � and with zero input, u = 0, the system state vector will approach zero as

time approaches infinity:

lim
t→∞

∥

∥q
∥

∥ = 0 for u = 0, (13.2)

where
∥

∥q
∥

∥ denotes the norm of the state vector q.2 If a system is assumed to be linear,

its dynamics can be represented by a linear nth-order differential equation:

an

dn y

dtn
+ · · · + a1

dy

dt
+ a0 y = bm

dmu

dtm
+ · · · + b1

du

dt
+ b0u, (13.3)

2 The norm of the state vector q in Euclidean space is defined by

∥

∥q
∥

∥ =

√

√

√

√

n
∑

i=1

q2
i ,

which is the length of q.

13.3. Algebraic Stability Criteria 333

where m ≤ n. A linear system described by Eq. (13.3) is asymptotically stable if,

whenever u(t) = 0, the limit of y(t) for time approaching infinity is zero for any

initial conditions, that is,

lim
t→∞

y(t) = 0 if u(t) = 0. (13.4)

If u(t) is equal to zero, the system input–output equation becomes homogeneous:

an

dn y

dtn
+ · · · + a1

dy

dt
+ a0 y = 0. (13.5)

Assuming for simplicity that all roots of the characteristic equation, r1, r2, . . . , rn, are

distinct, which does not limit the generality of further considerations, the solution of

Eq. (13.5) is

y(t) =
n

∑

i=1

Ki e
ri t . (13.6)

The output signal given by Eq. (13.6) will satisfy the condition given in Eq. (13.4) if

and only if all roots of the characteristic equation, r1, r2 . . . rn, are real and negative

or are complex and have negative real parts. This observation leads to a theorem

defining conditions for stability of linear systems. According to this theorem, a linear

system described by Eq. (13.3) is asymptotically stable if and only if all roots of

the characteristic equation lie strictly in the left half of the complex plane, that

is, if

Re[ri] < 0 for i = 1, 2, . . . , n. (13.7)

It can thus be concluded that stability of linear systems depends on only the loca-

tion of the characteristic roots in the complex plane. Note also that stability of

linear systems does not depend on the input signals. In other words, if a linear

system is stable, it will remain stable regardless of the type and magnitude of

input signals applied to the system. It should be stressed that this is true only for

linear systems. Stability of nonlinear systems, which is beyond the scope of this

book, is affected not only by the specific system properties but also by the input

signals.

13.3 ALGEBRAIC STABILITY CRITERIA

The transfer function of the linear system described by Eq. (13.3) is a ratio of poly-

nomials:

T(s) =
B(s)

A(s)
, (13.8)

where the polynomials A(s) and B(s) are

A(s) = ansn + · · · + a1s + a0, (13.9)

B(s) = bmsm + · · · + b1s + b0. (13.10)

334 Closed-Loop Systems and System Stability

G(s)U(s) Y(s)

H(s)

+

−

Figure 13.3. A linear feedback system.

The roots of the system characteristic equation are, of course, the same as the roots

of the equation A(s) = 0, which are the poles of the system transfer function. The

transfer function of the feedback system shown in Fig. 13.3 is

TCL(s) =
G(s)

1 + G(s)H(s)
, (13.11)

where G(s) = Ng(s)/Dg(s) and H(s) = Nh(s)/Dh(s). The system characteristic equa-

tion is thus

1 + G(s)H(s) = 0 or Ng(s)Nh(s) + Dg(s)Dh(s) = 0. (13.12)

All roots of Eq. (13.12) must be located in the left half of the complex plane for

asymptotic stability of the system.

An obvious way to determine whether the conditions of asymptotic stability are

met would be to find the roots of Eq. (13.12) and check if all have negative real

parts. This direct procedure may be cumbersome, and it usually requires a com-

puter if a high-order system model is involved. Several stability criteria have been

developed that allow for verification of the stability conditions for a linear system

without calculating the roots of the characteristic equation. In this section, two such

methods, the Hurwitz and the Routh stability criteria, are introduced. Both methods

are classified as algebraic stability criteria because they both require some algebraic

operations to be performed on the coefficients of the system characteristic equa-

tion. These algebraic methods are widely used because of their simplicity, although

their applicability is limited to problems in which an analytical form of the system

characteristic equation is known.

In both the Hurwitz and the Routh methods, the same necessary condition for

stability is formulated. Consider an nth-order characteristic equation,

ansn + · · · + a1s + a0 = 0. (13.13)

A necessary (but not sufficient) condition for all the roots of Eq. (13.13) to have

negative real parts is that all the coefficients ai , i = 0, 1, 2, . . . , n, have the same sign

and that none of the coefficients vanishes. This necessary condition for stability can

therefore be verified by inspection of the characteristic equation, and this inspection

serves as an initial means of screening for instability (or as a means of detecting that

an algebraic sign error has been made in the analysis of an inherently stable passive

system).

13.3.1 Hurwitz Criterion

The Hurwitz necessary and sufficient set of conditions for stability is based on the

set of determinants, which is formed as follows:

13.3. Algebraic Stability Criteria 335

D1 = |an−1| ,

D2 =
∣

∣

∣

∣

an−1 an−3

an an−2

∣

∣

∣

∣

,

D3 =

∣

∣

∣

∣

∣

∣

an−1 an−3 an−5

an an−2 an−4

0 an−1 an−3

∣

∣

∣

∣

∣

∣

,

D4 =

∣

∣

∣

∣

∣

∣

∣

∣

an−1 an−3 an−5 an−7

an an−2 an−4 an−6

0 an−1 an−3 an−5

0 an an−2 an−4

∣

∣

∣

∣

∣

∣

∣

∣

.

The coefficients not present in the characteristic equation are replaced with zeros in

the Hurwitz determinants.3

The necessary and sufficient set of conditions for all the roots of Eq. (13.13) to

have negative real parts is that all the Hurwitz determinants Dj , j = 1, 2, . . . , n, must

be positive.

It can be shown that if the necessary condition for stability is satisfied – that is, if

all the coefficients ai (i = 0, 1, . . . , n) have the same sign and none of them vanishes –

the first and the nth Hurwitz determinants, D1, Dn, are positive. Thus, if the necessary

condition is satisfied, it is sufficient to check if D2, D3, . . . , Dn−1 are positive.

EXAMPLE 13.1

Determine the stability of systems that have the following characteristic equations:

(a) 7s4 + 5s3 − 12s2 + 6s − 1 = 0. The coefficients in this characteristic equation have

different signs and thus the set of necessary conditions for stability is not met. The

system is unstable, and thus there is no need to look at the Hurwitz determinants.

(b) s3 + 6s2 + 11s + 6 = 0. The necessary condition is satisfied. Next, the Hurwitz deter-

minants must be examined (a more stringent test). Because the necessary condition

is satisfied, only D2 needs to be checked in this case. It is

D2 =
∣

∣

∣

∣

6 6

1 11

∣

∣

∣

∣

= 66 − 6 = 60 > 0.

Thus all determinants are positive and the system is stable.

(c) 2s4 + s3 + 3s2 + 5s + 10 = 0. The necessary condition is satisfied. The determinants

D2 and D3 are

D2 = −7, D3 = −45.

The set of necessary and sufficient conditions is not satisfied because both D2 and D3

are negative; the system is unstable.

3 B. C. Kuo, Automatic Control Systems, 7th ed. (Prentice-Hall, Englewood Cliffs, NJ, 1995), pp. 339–41.

336 Closed-Loop Systems and System Stability

EXAMPLE 13.2

Determine the range of values for the gain K for which the closed-loop system shown in

Fig. 13.4 is stable.

SOLUTION

First, find the system transfer function:

TCL(s) =

K(s + 40)

s(s + 10)

1 +
K(s + 40)

s(s + 10)(s + 20)

.

Hence the system characteristic equation is

s(s + 10)(s + 20) + K(s + 40) = 0,

which, after multiplying, becomes

s3 + 30s2 + (200 + K)s + 40K = 0.

The necessary conditions for stability are

200 + K > 0, 40K > 0.

Both inequalities are satisfied for K > 0, which satisfies the necessary conditions for

system stability. But this is not enough. The Hurwitz necessary and sufficient conditions

for stability of this third-order system are D1 > 0 and D2 > 0. The first inequality is

satisfied because D1 = a2 = 30. The second Hurwitz determinant D2 is

D2 =
∣

∣

∣

∣

a2 a0

a3 a1

∣

∣

∣

∣

=
∣

∣

∣

∣

30 40K

1 (200 + K)

∣

∣

∣

∣

= (6000 − 10K).

Combining the necessary and sufficient set of conditions yields the range of values of K

for which the system is stable:

0 < K < 600.

13.3.2 Routh Criterion

The Hurwitz criterion becomes very laborious for higher-order systems for which

large determinants must be evaluated. The Routh criterion offers an alternative

method for checking the sufficient conditions of stability.

U(s) Y(s)
+

−

K(s + 40)

s(s + 10)

1

s + 20

Figure 13.4. Closed-loop system considered in
Example 13.2.

13.3. Algebraic Stability Criteria 337

The Routh method involves a different set of necessary and sufficient stability

conditions based on an array of the form

sn

sn−1

sn−2

sn−3

...

s1

s0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an−2 an−4 an−6 · · ·
an−1 an−3 an−5 an−7 · · ·
b1 b2 b3 b4 · · ·
c1 c2 c3 c4 · · ·

· · ·
· · ·

where the a’s are the coefficients in the characteristic equation [Eq. (13.13)] and the

other coefficients, b, c, . . . , are calculated as follows:

b1 = (an−1an−2 − anan−3)/an−1

b2 = (an−1an−4 − anan−5)/an−1

...

c1 = (b1an−3 − an−1b2)/b1

c2 = (b1an−5 − an−1b3)/b1

...

The necessary and sufficient set of conditions for stability is that all elements in

the first column of the Routh array, an, an−1, b1, c1, . . . , must have the same sign.

If this set of conditions is not satisfied, the system is unstable and the number of

sign changes in the first column of the Routh array is equal to the number of roots

of the characteristic equation located in the right half of the complex plane. If an

element in the first column is zero, the system is unstable, but additional coefficients

for column 1 may be found by if a small number is substituted for the zero at this

location and proceeding. For a more detailed discussion relating to the occurrence

of zero coefficients, see Kuo.4

EXAMPLE 13.3

Determine the stability of a system that has the characteristic equation

s3 + 2s2 + 4s + 9 = 0.

SOLUTION

The Routh array is

s3

s2

s1

s0

∣

∣

∣

∣

∣

∣

∣

∣

1 4

2 9

−0.5

9

4 B. C. Kuo, op cit., pp. 340–1.

338 Closed-Loop Systems and System Stability

The system is unstable and there are two roots in the right half of the complex plane, as

indicated by two sign changes in the first column of the Routh array, from 2 to −0.5 and

from −0.5 to 9.

EXAMPLE 13.4

Determine the range of values of K for which the system having the following character-

istic equation is stable:

s3 + s2 + (5 + K)s + 3K = 0.

SOLUTION

The Routh array is

s3

s2

s1

s0

∣

∣

∣

∣

∣

∣

∣

∣

1 5 + K

1 3K

5 − 2K

3K

There will be no sign changes in the first column of the Routh array if

5 − 2K > 0 and 3K > 0,

which give the following range of K for stability:

0 < K < 2.5.

13.4 NYQUIST STABILITY CRITERION

The method proposed by Nyquist5,6 many years ago allows for the determination

of the stability of a closed-loop system on the basis of the frequency response of

the open-loop system. The Nyquist criterion is particularly attractive because it does

not require knowledge of the mathematical model of the system. Thus it can be

applied also in all those cases in which a system transfer function is not available in

an analytical form but the system open-loop frequency response may be obtained

experimentally.

To introduce the Nyquist criterion, the polar plots that, so far, have been drawn

for positive frequency only, 0 < � < ∞, must be extended to include negative fre-

quencies, −∞ < � < +∞. It can be shown that the polar plot of T(j�) for negative

frequencies is symmetrical about the real axis with the polar plot of T(j�) for positive

frequencies. An example of a polar plot for � varying from −∞ to +∞ is shown in

Fig. 13.5. Note that, to close the contour, a curve is drawn from the point correspond-

ing to � = 0− to the point � = 0+ in a clockwise direction, retaining the direction of

increasing frequency.

5 H. Nyquist, “Regeneration theory,” Bell Syst. Tech. J. 11, 126–47 (1932).
6 D. M. Auslander, Y. Takahashi, and M. J. Rabins, Introducing Systems and Control (McGraw-Hill, New

York, 1974), pp. 371–5.

13.4. Nyquist Stability Criterion 339

ω increasing

from 0+ to ∞

ω increasing

from −∞ to 0−

Im [T(jω)]

Re [T(jω)]
ω = ∞

Closing polar plot

for ω increasing

from 0− to 0+

Figure 13.5. Example of polar plot of T(j�) for −∞ < � < ∞.

Consider the same closed-loop system shown in Fig. 13.3. The Nyquist criterion

can be stated as follows: If an open-loop transfer function G(s)H(s) has k poles in

the right half of the complex plane, then for stability of the closed-loop system the

polar plot of the open-loop transfer function must encircle the point (−1, j0) k times

in the clockwise direction. An important implication of the Nyquist criterion is that

if the open-loop system is stable and thus does not have any poles in the right half of

the complex plane, k = 0, the closed-loop system is stable if G(j�)H(j�) does not

encircle the point (−1, j0).

If an open-loop system is stable, one can measure the system response to a

sinusoidal input over a wide enough range of frequency and then plot the experi-

mentally obtained polar plot to determine whether the curve encircles the critical

point (−1, j0): This experimental procedure can be applied only if the open-loop

system is stable; otherwise, no measurements can be taken from the system.

As one gains experience, it becomes possible for one to use the Nyquist criterion

by inspecting the polar plot of the open-loop transfer function for positive frequency

only. The general rule is that, for a system to be stable, the critical point (−1, j0)

must be to the left of an observer following the polar plot from � = 0+ to � = +∞.

Figure 13.6 shows polar plots for the system having the open-loop transfer func-

tion TOL = G(s)H(s) = K/(s3 + s2 + s + 1) for three different values of gain K.

According to the Nyquist criterion, the closed-loop system is asymptotically sta-

ble for K = K1; it is unstable for K = K3. For K = K2, the closed-loop system is said

to be marginally stable.

EXAMPLE 13.5

Determine the stability of the closed-loop system that has the open-loop transfer function

TOL(s) = K/s(s + 1)(2s + 1).

340 Closed-Loop Systems and System Stability

Im [TOL (jω)]

Re [TOL (jω)]
−1 K1 K2 K3

Marg
in

al
ly

st
ab

le

Unst

ab
le

e

Sta
bl

e

Figure 13.6. Polar plots for stable, marginally stable, and unstable systems.

SOLUTION

The sinusoidal transfer function of the open-loop system, TOL(j�), is

TOL(j�) =
K

j�(j� + 1)(2 j� + 1)
. (13.14)

The real and imaginary parts of TOL(j�) are

Re[TOL(j�)] = −
3K

9�2 + (2�2 − 1)2
, (13.15)

Im[TOL(j�)] = −
K(2�2 − 1)

9�3 + �(2�2 − 1)2
. (13.16)

According to the Nyquist criterion, the closed-loop system will be stable if

∣

∣TOL(j�p)
∣

∣ < 1

where �p is the frequency at the point of intersection of the polar plot with the negative

real axis. The imaginary part of TOL(j�) at this point is zero, and so the value of �p can

be found by the solution of

Im[TOL(j�)] = 0. (13.17)

Substituting into Eq. (13.17) the expression for Im[TOL(j�)], Eq. (13.16), yields

2�2
p − 1 = 0,

and hence �p = 1/
√

2 rad/s. To ensure stability of the closed-loop system, the real part

of TOL(j�) must be less than 1 at � = �p, i.e.,
∣

∣Re[T(j�p)]
∣

∣ < 1. (13.18)

Now substitute into Eq. (13.13) the expression for the real part, Eq. (13.15), to obtain

3K

9�2
p + (2�2

p − 1)2
< 1,

13.5. Quantitative Measures of Stability 341

Im [TOL(jω)]

Re [TOL(jω)]
0

−1

−1−2−3

−2

Figure 13.7. Polar plot for the system considered
in Example 13.5.

and solve for K:

0 < K < 1.5.

The closed-loop system will be stable for K less than 1.5. The polar plot of the open-loop

system transfer function for K = 1.5 is shown in Fig. 13.7.

13.5 QUANTITATIVE MEASURES OF STABILITY

As stated earlier in this chapter, an unstable control system is useless. And asymptotic

stability constitutes one of the basic requirements in the design of control systems.

However, the mere fact of meeting the stability conditions does not guarantee a

satisfactory performance of the system. A system designed to barely meet the stability

condition is very likely to become unstable because its actual parameter values may

be slightly different from the values used in the design. In addition, very often the

actual system parameters change in time as a result of aging, which again may push

the system over the stability limit if that limit is too close. It is therefore necessary in

the design of control systems to determine not only whether the system is stable but

also how far the system is from instability. To answer this question, some quantitative

measure of stability is needed. Two such measures, a gain margin and a phase margin,

are derived from the Nyquist stability criterion.

If the G(s)H(s) curve passes through the point (−1, j0), which represents critical

conditions for stability in the Nyquist criterion, the open-loop system gain is equal

to 1 and the phase angle is −180◦, which can be written mathematically as

∣

∣G(j�)H(j�)
∣

∣ = 1, (13.19)

� G(j�)H(j�) = −180◦. (13.20)

If both the magnitude condition [Eq. (13.19)] and the phase condition [Eq. (13.20)]

are satisfied, the closed-loop system is said to be marginally stable. The use of stability

margins provides the means for indicating how far the system is from one of the critical

conditions, Eq. (13.19) or (13.20), while the other condition is met.

The gain margin kg is defined as

kg =
1

∣

∣Re[G(j�p)H(j�p)]
∣

∣

, (13.21)

342 Closed-Loop Systems and System Stability

where �p is the frequency for which the phase angle of the open-loop transfer function

is −180◦. When the gain margin has been expressed in decibels, it is calculated as

kgdB = 20 log

{

1
∣

∣Re[G(j�p)H(j�p)]
∣

∣

}

. (13.22)

The gain margin can be thought of as the factor by which the open-loop gain can be

increased while stability is maintained in the closed-loop system. For example, if the

magnitude of an open-loop transfer function is 0.2 at �p, then the gain margin is 5.0

[see Eq. (13.21)]. Because marginal stability of the closed-loop system occurs when

the magnitude of the open-loop transfer function at �p is 1, then the gain can be

increased by as much as 5 (the new open-loop transfer function magnitude becomes

5 × 0.2) before the closed-loop system becomes unstable.

The phase margin � is defined as

� = 180◦ + � G(j�g)H(j�g), (13.23)

where �g is the frequency for which the magnitude of the open-loop transfer function

is unity:

∣

∣G(j�g)H(j�g)
∣

∣ = 1. (13.24)

Similar to the gain margin, the phase margin supplies information about how close

the closed-loop system is to unstable behavior, but, unlike the gain margin, it pro-

vides no direct information about how much the open-loop gain can be increased and

still ensure closed-loop system stability. Figure 13.8 presents a graphical interpreta-

tion of both phase and gain margins on a polar plot of a typical open-loop transfer

function.

In typical control system applications, the lowest acceptable gain margin is usu-

ally between 1.2 and 1.5 (or 1.6 and 3.5 dB). The typical range for the acceptable

phase margin is from 30◦ to 45◦.

γ

ω�

ωp

Im [TOL (jω)]

Re [TOL (jω)]

1/kg

−1

−1

+1

+1

Unit circle

Figure 13.8. Graphical interpretation of stability margins.

13.5. Quantitative Measures of Stability 343

EXAMPLE 13.6

Determine the open-loop gain necessary for the closed-loop system shown in Fig. 13.9 to

be stable with the gain margin kg ≥ 1.2 and the phase margin � ≥ 45◦.

(s + 1)(2s + 1)(3s + 1)
Y(s)U(s)

K+

−
Figure 13.9. Block diagram of the system con-
sidered in Example 13.6.

SOLUTION

The open-loop system transfer function is

TOL(s) =
K

6s3 + 11s2 + 6s + 1
. (13.25)

When s = j�, the sinusoidal transfer function is found to be

TOL(j�) =
K

(1 − 11�2) + j6�(1 − �2)
, (13.26)

or, equally,

TOL(j�) =
K[(1 − 11�2) − j6�(1 − �2)]

[(1 − 11�2)2 + 36�2(1 − �2)2]
. (13.27)

The frequency �p for which the phase angle is −180◦ is found by the solution of

Im[TOL(j�)] = 0. (13.28)

Substituting into Eq. (13.28) the expression for the imaginary part of the open-loop

transfer function from Eq. (13.27) yields

�p = 1 rad/s. (13.29)

The real part of the open-loop transfer function for this frequency is

Re[TOL(j�p)] = −
K

10
. (13.30)

Substituting Eq. (13.30) into the condition for the gain margin, kg ≥ 1.2, yields

10

K
≥ 1.2, K ≤ 8.3333.

Now, to satisfy the phase margin requirement, the phase angle of the open-loop transfer

function for the frequency at which the magnitude is 1 should be

� TOL(j�g) = −180◦ + 45◦ = −135◦. (13.31)

From the expression for the open-loop transfer function [Eq. (13.26)], the phase angle of

TOL(j�) for �g is

� TOL(j�g) = tan−1(0) − tan−1

[

6�g(1 − �2
g)

1 − 11�2
g

]

. (13.32)

344 Closed-Loop Systems and System Stability

Comparing the right-hand sides of Eqs. (13.31) and (13.32) yields

− tan−1

[

6�g(1 − �2
g)

1 − 11�2
g

]

= −135◦. (13.33)

Taking the tangents of both sides of Eq. (13.33) yields a cubic equation for �g:

6�3
g + 11�2

g − 6�g − 1 = 0, (13.34)

which has the solution

�g = 0.54776 rad/s.

Now use Eq. (13.24) to obtain
∣

∣TOL(j�g)
∣

∣ = 1. (13.35)

The magnitude of TOL(j�) for this system is

∣

∣TOL(j�g)
∣

∣ =
K

√

(1 − 11�2
g)2 + 36�2

g(1 − �2
g)2

. (13.36)

Combine Eqs. (13.35) and (13.36) to obtain the solution for K that satisfies the phase

condition:

K = 3.27.

This value is smaller than the value of K obtained from the gain condition: Therefore the

open-loop gain must be equal to 3.27 (or less) to meet both the gain and the phase angle

conditions.

13.6 ROOT-LOCUS METHOD

In Chap. 4 and also in Sections 13.2 and 13.3, a system transient performance and

ultimately the system stability were shown to be governed by the locations of the

roots of the system characteristic equation in the s plane. This fact has important

implications for methods used in both analysis and design of dynamic systems. In the

analysis of system dynamics, it is desirable to know the locations of the characteristic

roots in order to be able to predict basic specifications of the transient performance. In

the design process, the system parameters are selected to obtain the desired locations

of the roots in the s plane. Knowledge of the locations of the characteristic roots and

of the paths of their migration in the s plane as a result of variations in system

parameters is therefore extremely important for a system engineer.

A very powerful and relatively simple technique, called the root-locus method,

was developed by W. R. Evans7,8 to assist in determining locations of roots of the

characteristic equations of feedback systems. The graphs generated with the root-

locus method show the migration paths of the characteristic roots in the s plane

resulting from variations of selected system parameters. The parameter that is of

particular interest in the analysis of feedback systems is an open-loop gain. When

7 W. R. Evans, “Graphical analysis of control systems,” Trans. Am. Inst. Electr. Eng. 67, 547–51 (1948).
8 W. R. Evans, Control-System Dynamics (McGraw-Hill, New York, 1954), pp. 96–121.

13.6. Root-Locus Method 345

the open-loop gain increases, the system response may become faster, but if the

increase is too great it may lead to very oscillatory or even unstable behavior.

Although the root-locus method can be used to determine the migration of roots

caused by variation of any of the system parameters, it is most often used to examine

the effect of varying the open-loop gain.

The significance of the root-locus method is illustrated in Example 13.7.

EXAMPLE 13.7

Consider the unity feedback system shown in Fig. 13.10. The system open-loop transfer

function is

TOL(s) =
K

s(s + 2)
, (13.37)

where K ≥ 0 is the open-loop gain. The closed-loop transfer function is

TCL(s) =
K

(s2 + 2s + K)
. (13.38)

Hence the closed-loop system characteristic equation is

s2 + 2s + K = 0, (13.39)

and hence the roots are

s1 = −1 −
√

1 − K, s2 = −1 +
√

1 − K (13.40)

As the open-loop gain varies from zero to infinity, the roots change as follows:

� For K = 0: s1 = −2 and s2 = 0.
� For K increasing from 0 to 1: Both roots remain real, with s1 moving from −2 to −1

and s2 moving from 0 to −1.
� For K between 1 and infinity: The roots are complex conjugate, s1 = −1

− j
√

K − 1 and s2 = −1 + j
√

K − 1.

The migration of roots for 0 ≤ K < ∞ is shown in Fig. 13.11. Once the root locus

is plotted, it is easy to determine the locations of the characteristic roots necessary for

a desired system performance. For instance, if the desired damping ratio for the system

considered in this example is � = 0.7, the roots must be located at points A1 and A2, which

correspond to

s1 = −1 + j, s2 = −1 − j.

The characteristic equation for these roots takes the form

(s + 1 − j)(s + 1 + j) = 0

or

s2 + 2s + 2 = 0. (13.41)

TOL(s)U(s) Y(s)
E(s)+

−

Figure 13.10. Block diagram of unity feedback
system.

346 Closed-Loop Systems and System Stability

A1

A2

1

−1

−1

−2 0
45°

45°

Im [s]

Re [s]

Figure 13.11. Root locus for T(s) = K/(s2 +
2s + K).

When Eq. (13.41) is compared with the characteristic equation in terms of K [Eq. (13.39)],

the required value of the open-loop gain is found to be

K = 2.

The direct procedure for plotting loci of characteristic roots used in Example

13.7 becomes impractical for higher-order systems. The method developed by Evans,

consisting of several simple rules, greatly simplifies the process of plotting root loci.

A block diagram of the system to which the method applies is shown in Fig. 13.10.

The characteristic equation of this system is

1 + TOL(s) = 0, (13.42)

where TOL(s) is an open-loop transfer function that can be expressed as

TOL(s) =
KB(s)

A(s)
, (13.43)

where K is an open-loop gain and A(s) and B(s) are polynomials in s of nth and mth

order, respectively. It should be noted that m ≤ n. The open-loop transfer function

is, in general, a complex quantity, and therefore Eq. (13.42) is equivalent to two

equations representing magnitude and phase angle conditions, i.e.,
∣

∣TOL(s)
∣

∣ = 1 (13.44)

and, for K > 0,

� TOL(s) = ±(2k + 1)� for k = 0, 1, 2, . . . , (13.45a)

or, for K < 0,

� TOL(s) = ±2k� for k = 0, 1, 2, (13.45b)

All roots of the characteristic equation, si , i = 1, 2, . . . , n, must satisfy both the mag-

nitude condition [Eq. (13.44)] and the phase angle condition [Eq. (13.45a,b)]. The

following rules for plotting root loci are derived from these two conditions.

(1) The root locus is symmetric about the real axis of the s plane.

13.6. Root-Locus Method 347

(2) The number of branches of the root loci is equal to the number of roots of the

characteristic equation or, equally, to the order of A(s).

(3) The loci start at open-loop poles for K = 0 and terminate either at open-

loop zeros (m branches) or at infinity along asymptotes for K → ∞ (n – m

branches).

(4) The loci exist on section of the real axis between neighboring real poles and/or

zeros, if the number of real poles and zeros to the right of this section is odd, for

K > 0 (or, if the number is even, for K < 0).

(5) In accordance with rule (3), n − m loci terminate at infinity along asymptotes.

The angles between the asymptotes and the real axis are given, for K > 0,

by

� = ±180
2k + 1

n − m
deg, k = 0, 1, 2, . . . , (13.46a)

and, for K < 0, by

� = ±180
2k

n − m
deg, k = 0, 1, 2, (13.46b)

(6) All the asymptotes intersect the real axis at the same point. The abscissa of that

point is

	a =
n
∑

poles −
m
∑

zeros

n − m
(13.47)

where the summations are over finite poles and zeros of TOL(s).

(7) The loci depart the real axis at breakaway points and enter the real axis at break-

in points. One can find the locations of these points by solving for “min–max”

values of s by using9

d

ds

[

−
A(s)

B(s)

]

= 0. (13.48)

(8) The angles of departure from complex poles at K = 0 and the angles of arrival at

complex zeros at K → ∞ are found by application of the angle condition given

by Eqs. (13.45a) and (13.45b) to a point infinitesimally close to the complex pole

or zero in question.

(9) The points where the loci cross the imaginary axis in the s plane are determined

by the solution of the system characteristic equation for s = j� or by use of the

Routh stability criterion.

Table 13.1 shows examples of root loci for common transfer functions for K > 0.

9 R. C. Dorf and R. H. Bishop, Modern Control Systems, 7th ed. (Addison-Wesley, New York, 1995),

pp. 325–28.

348 Closed-Loop Systems and System Stability

Table 13.1. Examples of root loci for common system transfer functions for K > 0

13.7. MATLAB Tools for System Stability Analysis 349

13.7 MATLAB TOOLS FOR SYSTEM STABILITY ANALYSIS

As with the frequency response techniques described in Chap. 12, MATLAB’s Con-

trol System Toolbox provides powerful numerical tools to aid in the determination

of relative stability of closed-loop systems. In particular, the function margin com-

putes the phase and gain margin of a system in a unity feedback configuration. It also

provides a graphical representation in the form of an annotated Bode diagram. The

function rlocus automatically draws the loci of closed-loop poles given the transfer

function of an open-loop system. The plot it generates is interactive and allows the

user to easily and rapidly find the open-loop gain that corresponds to a given location

of closed-loop poles.

13.7.1 Phase and Gain Margin Determination

Given a closed-loop feedback system of the form shown in Fig. 13.10, there are two

different methods to call the routine that determines the gain and phase margins of

the system:

>> [Gm, Pm, Wcg, Wcp] = margin(Tsys)

where Tsys is a system object (see description in Appendix 3), Gm is the gain margin

(returned as a linear gain factor), Pm is the phase margin (in degrees), Wcg is the

frequency at which the gain is unity, and Wcp is the frequency at which the phase is

−180◦.

Alternatively, invoking the function without any return variables,

>> margin(Tsys)

generates an annotated Bode diagram on which the margins and their crossover

frequencies are indicated.

EXAMPLE 13.8

Given the open-loop transfer function in Example 13.6, find the gain margin and phase

margin of the system for the case in which K = 2.0.

SOLUTION

First, create at transfer function object in the MATLAB environment:

>> tf138=tf([2], [6 11 6 1])

Transfer function:

2

6 s∧3 + 11 s∧2 + 6 s +1

Next, find the margins associated with this open-loop transfer function:

>> [gm pm wcg wcp]=margin(tf138)

350 Closed-Loop Systems and System Stability

50

−50

−100

−150

−90

−180

−270
10−2 10−1 100 101

Frequency (rad/s)

102

0

0

M
ag

n
it

u
d
e

(d
B

)
P

h
as

e
(d

eg
)

Gm = 14 dB (at 1 rad/s), Pm = 74.6 deg (at 0.373 rad/s)

Figure 13.12. Bode plot for Example 13.8 showing the phase and gain margins (arrows added for
emphasis).

which leads to the following results:

kg = 5.0 (14 dB),

� = 74.6◦,

�cg = 1.0,

�cp = 0.373.

To better interpret these results, consider the Bode plot that is generated by the

alternative call of margin, Fig. 13.12.

13.7.2 Root-Locus Plots in MATLAB

Section 13.6 describes the method by which the approximate loci of closed-loop poles

can be sketched given the location of the poles and zeros of the open-loop system.

This method of sketching is very effective and should not be underestimated as a

tool in developing the structure of control systems. However, fine-tuning the gain

of the final closed-loop design often requires a level of accuracy that is difficult to

achieve in hand-sketched plots. MATLAB’s rlocus command is a fast and easy

way to generate an accurate root-locus plot and to compute the gain corresponding

to any set of poles along the loci. The format of the command is

>> rlocus(Tsys)

13.8. Synopsis 351

Example 13.9

Given the transfer function from Example 13.6, find the value of gain K that results in a

pair of complex poles with equal real and imaginary parts (corresponding to a damping

ratio of 0.707).

Again, start the process by entering the transfer function. In this case, enter the

transfer function by using unity gain, knowing that the root-locus method will compute a

gain factor that, when multiplied by the original open-loop gain, will result in a closed-loop

system of desired properties:

>> tf139=tf([1],[6 11 6 1])

Transfer function:

1

————————————————————————————

6 s∧3 + 11 s∧2 + 6 s + 1

>> rlocus(tf139)

The resulting plot shows the three different loci (one for each of the system poles).

However, this particular plot is interactive. If any of the loci is selected with a mouse

click, a small black block appears indicating a pole location along with a callout show-

ing the properties of that particular pole and the gain associated with that pole loca-

tion. By dragging the block, any pole location along any of the loci can be found (and

hence, the corresponding gain factor). Figure 13.13 shows a screen shot of the root-locus

plot, with the pole indicator at the location desired by the problem statement. There-

fore a closed-loop gain of 0.561 results in a pair of complex poles whose damping ratio

is near 0.7071.

13.8 SYNOPSIS

Along with many beneficial effects that can be attributed to the presence of feed-

back in engineering systems, there are also some unwanted side effects of feedback

on system performance. One such side effect is system instability, which is of utmost

importance for design engineers. In this chapter, the conditions for stability of feed-

back systems were formulated. First, the stability conditions were stated in general,

descriptive terms to enhance understanding of the problem. A more rigorous def-

inition of stability for linear systems, developed by Lyapunov, was then presented.

It was shown that for stability of linear systems it is necessary and sufficient that all

roots of the closed-loop system characteristic equation lie strictly in the left half of

the complex plane. Two algebraic stability criteria developed by Hurwitz and Routh

were introduced. The Hurwitz criterion uses determinants built on coefficients of the

characteristic equation to determine if there are any roots located in the right half of

the complex plane. The Routh method leads to the same result and, in addition, gives

the number of unstable roots. The Nyquist stability criterion was also presented. The

practical importance of the Nyquist method lies in that it determines the stability

of a closed-loop system based on the frequency response of the system components

with the feedback loop open. Two quantitative measures of stability, gain margin

and phase margin, derived from the Nyquist criterion, were introduced. Finally, a

352 Closed-Loop Systems and System Stability

1.5

1

0

−0.5

0.5

−1

−1.5
−2.5 −2 −1.5 −1 −0.5 0 0.5

Real Axis

Im
ag

in
ar

y
 A

x
is

System: tf139

Gain: 0.561

Pole: −0.332 + 0.334i

Damping: 0.704

Overshoot (%): 4.43

Frequency (rad/s): 0.471

Figure 13.13. Root locus for the system considered in Example 13.9.

root-locus method for design of feedback systems, based on the migration paths of

the system characteristic roots in the complex plane, was described.

PROBLEMS

13.1 A closed-loop transfer function of a dynamic system is

TCL(s) =
s + 10

10s4 + 10s3 + 20s2 + s + 1
.

Use the Hurwitz criterion to determine the stability of this system.

13.2 The transfer functions of the system represented by the block diagram shown in

Fig. P13.2 are

G(s) =
2s + 1

3s3 + 2s2 + s + 1
,

H(s) = 10.

(a) Determine the stability of the open-loop system.

(b) Determine the stability of the closed-loop system.

Problems 13.2–13.6 353

G(s)U(s)
E(s)

Y(s)

H(s)

+

− Figure P13.2. Block diagram of the feedback system
considered in Problem 13.2.

13.3 Figure P13.3 shows a block diagram of a control system. The transfer functions of

the controller TC(s) and of the controlled process TP(s) are

TC(s) = K

(

1 +
1

4s

)

,

TP(s) =
5

100s2 + 20s + 1
.

Using the Hurwitz criterion, determine the stability conditions for the open-loop and

closed-loop systems in terms of the controller gain K.

U(s) Y(s)
E(s)

TC(s) TP(s) Figure P13.3. Block diagram of a control
system.

13.4 The transfer functions of the system shown in Fig. P13.3 are

TC(s) = K,

Tp(s) =
2

s(
s + 1)2
.

Determine the stability condition for the closed-loop system in terms of the controller

gain K and the process time constant
 . Show the area of the system stability in the (
, K)

coordinate system.

13.5 Examine the stability of the systems whose characteristic equations are subsequently

listed. Determine the number of roots of the characteristic equation having positive real

parts for unstable systems:

(a) s3 + 12s2 + 41s + 42 = 0,

(b) 400s3 + 80s2 + 44s + 10 = 0,

(c) s4 + s3 − 14s2 + 26s − 20 = 0.

13.6 The transfer functions of the system shown in Fig. P13.3 are

TC(s) = K,

TP(s) =
1

s(0.2s + 1)(0.08s + 1)
.

Sketch the polar plot of the open-loop system TCTP, and determine the stability

condition for the closed-loop system in terms of the controller gain K by using the Nyquist

criterion.

354 Closed–Loop Systems and System Stability

13.7 The block diagram for a control system has been developed as shown in Fig. P13.7.

The system parameters are

kC = 3.0 v/v, kP = 4.6 m/V,

i = 3.5 s,
P = 1.4 s,

C = 0.1 s, kf = 1.0 V/m.

kC

(τCs + 1)τis

kf

kP

τPs + 1
Y(s)

E(s)

U(s)
+

−

Figure P13.7. Block diagram of the system considered in Problem 13.7.

(a) Determine whether the system is stable or unstable.

(b) If the system is stable, find the stability gain and phase margins.

13.8 A simplified block diagram of a servomechanism used to control the angular position

of an antenna dish, �, is shown in Fig. P13.8. A potentiometer having gain kp is used to

produce a voltage signal proportional to the angular position of the antenna. This voltage

signal is compared with voltage u(t), which is proportional to the desired position of the

antenna. The difference between the desired and actual positions is amplified to produce

a driving signal for the electric dc motor.

(a) Determine the stability of the closed-loop system if the potentiometer gain is kp =
1.5 V/rad.

(b) Find the potentiometer gain for which the closed-loop system will be stable with the

gain margin kg = 1.2.

(c) Find the potentiometer gain for which the closed-loop system will be stable with the

phase margin � = 45◦.

0.01

s(1 + 0.1s)(1 + 0.2s)
10 θ(s)

Controller Motor and load

Potentiometer

E(s)
U(s)

+

−

kp

Figure P13.8. Simplified block diagram of the servomechanism considered in Problem 13.8.

13.9 Consider the feedback system represented by the block diagram shown in Fig. P13.3

with the following transfer functions:

TC(s) = K,

TP(s) =
10

(s + 5)(s + 0.2)
.

(a) Construct the root locus for this system.

Problems 13.9–13.12 355

(b) Determine the locations of the roots of the system characteristic equation required

for 20 percent overshoot in the system step response. Find the value of K necessary for

the roots to be at the desired locations. What will be the period of damped oscillations

Td in the system step response?

13.10 The transfer functions for the system represented by the block diagram shown in

Fig. P13.3 are

TC(s) = K,

TP(s) =
1

(s + 1)(s + 2)(s + 5)
.

(a) Construct the root locus for this system.

(b) Use the constructed root locus to determine the value of K for which the closed-loop

system is marginally stable.

13.11 Subsection 13.3.1 describes the first four Hurwitz determinants used to determine

stability of an nth-order system. Derive the general expression for the jth Hurwitz deter-

minant of an nth-order system.

13.12 For the liquid-level control system in Problem 11.11, use the Routh criterion to

find the limits for kp to ensure the stability of the closed-loop system.

14

Control Systems

LEARNING OBJECTIVES FOR THIS CHAPTER

14–1 To characterize the steady-state behavior of a system through analysis of the

system transfer function.

14–2 To evaluate the steady-state disturbance sensitivity of a system.

14–3 To understand the trade-off between transient and steady-state performance

specifications in control system design.

14–4 To select gains of a proportional–integral–derivative controller based on open-

loop system performance.

14–5 To design an appropriate cascade compensator based on steady-state and tran-

sient performance specifications.

14.1 INTRODUCTION

In Chap. 1, it was pointed out that negative feedback is present in nearly all existing

engineering systems. In control systems, which are introduced in this chapter, negative

feedback is included intentionally as a means of obtaining a specified performance

of the system.

Control is an action undertaken to obtain a desired behavior of a system, and

it can be applied in an open-loop or a closed-loop configuration. In an open-loop

system, shown schematically in Fig. 14.1, a process is controlled in a certain prescribed

manner regardless of the actual state of the process. A washing machine performing

a predefined sequence of operations without any information and “with no concern”

regarding the results of its operation is an example of an open-loop control system.

In a closed-loop control system, shown in Fig. 14.2, the controller produces a

control signal based on the difference between the desired and the actual process

output. The washing machine previously considered as an open-loop system would

operate in a closed-loop mode if it were equipped with a measuring device capable

of generating a signal related to the degree of cleanness of the laundry being washed.

Open-loop control systems are simpler and less expensive (at least by the cost

of the measuring device necessary to produce the feedback signal); however, their

performance can be satisfactory only in applications involving highly repeatable pro-

cesses that have well-established characteristics and are not exposed to disturbances.

The methods for analysis of open-loop control systems are the same as the methods

356

14.2. Steady-State Control Error 357

Control signalInput signal
Controller Process

Output signal

Figure 14.1. Open-loop control system.

developed for analysis of dynamic systems in general, discussed in previous chapters.

In this chapter, the basic characteristics of linear closed-loop systems are investigated.

In Chap. 13, the conditions under which a linear system is stable were derived.

It was also shown how to design a linear closed-loop system for a specified gain

and phase margin. Equally important to stability characteristics is the knowledge

of the expected steady-state performance of the system. In Section 14.2, a control

error (that is, the difference between the desired and the actual system output) at

steady state is evaluated for various types of systems and various types of input

signals. Another aspect of steady-state performance of control systems – namely, the

sensitivity to disturbances – is discussed in Section 14.3. The problem of designing

a control system that will meet specified steady-state and transient performance

criteria is presented in Section 14.4. In Section 14.5, the most common algorithms

used in industrial controllers are described. More specialized control devices, called

compensators, are the subject of Section 14.6.

14.2 STEADY-STATE CONTROL ERROR

For most closed-loop control systems the primary goal is to produce an output sig-

nal that follows an input signal as closely as possible. The steady-state performance

of a control system is therefore judged by the steady-state difference between the

input and output signals – that is, the steady-state error. Any physical control system

inherently suffers steady-state error in response to certain types of inputs as a result

of inadequacies in the system components, such as insufficient gain, output limit-

ing, static friction, amplifier drift, or aging. In general, the steady-state performance

depends on not only the control system itself but also on the type of input signal

applied. A system may have no steady-state error in response to a step input, yet

the same system may exhibit nonzero steady-state error in response to a ramp input.

This error can usually be reduced by an increase in the open-loop gain. Increasing

the open-loop gain should, however, be done with care, because it usually has other

effects on the system performance. Such effects may include an increase in the speed

of response – that is, a reduction in the time to reach steady state, which is usually

Control SignalControl error

Feedback signal

Desired output

+
−

Controller Process

Measuring
device

Actual output

Figure 14.2. Closed-loop control system.

358 Control Systems

G(s) Y(s)
E(s)+

−

U(s)

H(s)

Figure 14.3. Block diagram of a closed-loop system.

welcome, and an increase in the system’s tendency to oscillate, eventually reducing

stability margins, which is unwelcome.

The steady-state error that occurs in control systems owing to their incapability

of following particular types of inputs are now discussed.

Consider the closed-loop system shown in Fig. 14.3. The open-loop transfer func-

tion of this system, G(s)H(s), is

G (s) H (s) =
bmsm + · · · + b1s + b0

sr (ansn + · · · + a1s + a0)
, (14.1)

where m is the number of zeros, n is the number of nonzero poles, and r is the

multiplicity of poles at the origin. The “error transfer function” of the system, relating

the error signal e(t) and the input signal u(t) in the domain of complex variable s, is

defined as

TE (s) =
E (s)

U (s)
. (14.2)

For the system shown in Fig. 14.3, TE(s) takes the form

TE (s) =
U (s) − Y (s) H (s)

U (s)
. (14.3)

The closed-loop transfer function is

Y (s)

U (s)
=

G (s)

1 + G (s) H (s)
. (14.4)

Substituting Eq. (14.4) into Eq. (14.3) yields

TE (s) =
1

1 + G (s) H (s)
. (14.5)

The error signal is thus given by

E (s) = TE (s) U (s) (14.6)

or

E (s) =
U (s)

1 + G (s) H (s)
. (14.7)

When the final-value theorem from Laplace transform theory (Appendix 2) is

applied, the steady-state error ess can be calculated as

ess = lim
t→∞

e (t) = lim
s→0

sE (s) = lim
s→0

sU (s)

1 + G (s) H (s)
. (14.8)

This result will now be used in evaluating the steady-state error in response to step

inputs and ramp inputs. The results obtained for these two types of input signals can

14.2. Steady-State Control Error 359

be applied to more general cases involving linear systems in which actual inputs may

be considered combinations of such inputs.

14.2.1 Unit Step Input, u(t) = Us(t)

The unit step function in the domain of complex variable s is represented by

U (s) =
1

s
, (14.9)

where U (s) = � [u (t)], where u(t) is a unit step at t = 0. The steady-state error for

a unit step is calculated with Eq. (14.8)1:

ess = lim
s→0

s (1/s)

1 + G (s) H (s)
(14.10)

or

ess =
1

1 + Kp
, (14.11)

where Kp is the static-position error coefficient, defined as

Kp = lim
s→0

G (s) H (s) = G (0) H (0) , (14.12)

or, by use of Eq. (14.1),

Kp = lim
s→0

bmsm + · · · + b1s + b0

sr (ansn + · · · + a1s + a0)
. (14.13)

Now assume that the system has no poles at the origin, r = 0. Such systems are called

type 0 systems. The static-position error coefficient for the type 0 system is

Kp =
b0

a0
= K (14.14)

and the steady-state error is

ess =
1

1 + K
. (14.15)

If there is at least one pole at the origin, r ≥ 1, the static-position error coefficient

Kp is infinite and the steady-state error is zero, ess = 0. Systems with r = 1, 2, . . . , are

called type 1, 2, . . . , systems, respectively. Therefore it can be said that

ess = 0 for type 1 or higher systems. (14.16)

1 Note that s cancels 1/s in Eq. (14.10). This leads to the notion of using a simplified final-value expression

for a unit step input, i.e.,

ess = lim
s→0

TE (s) = lim
s→0

1

1 + G (s) H (s)
.

The use of this simplified final-value expression can be substantiated by use of

u (t) = lim
s→0

est

to represent a unit step and finding the system response as

y (t) = lim
s→0

Y (s) est = lim
s→0

TE (s) est .

360 Control Systems

14.2.2 Unit Ramp Input, u(t) = t

The steady-state error for a unit ramp input2 is given by

ess = lim
s→0

s
1

s2

1 + G (s) H (s)
= lim

s→0

1

sG (s) H (s)
. (14.17)

The static-velocity error coefficient is defined as

Kv = lim
s→0

sG (s) H (s) . (14.18)

The steady-state error can thus be expressed as

ess =
1

Kv
. (14.19)

For a type 0 system, r = 0, the static-velocity error coefficient is

Kv = lim
s→0

s
bmsm + · · · + b1s + b0

sr (ansn + · · · + a1s + a0)
= 0 (14.20)

and the steady-state error3 is

ess =
1

Kv
= ∞ for type 0 systems. (14.21)

For a type 1 system, r = 1,

Kv = lim
s→0

s
bmsm + · · · + b1s + b0

sr (ansn + · · · + a1s + a0)
=

b0

a0
= K (14.22)

and the steady-state error is

ess =
1

Kv
=

1

K
for type 1 systems. (14.23)

For a type 2 or higher system, r ≥ 2,

Kv = lim
s→0

s
bmsm + · · · + b1s + b0

sr (ansn + · · · + a1s + a0)
= ∞ (14.24)

and the steady-state error is

ess =
1

Kv
= 0 for type 2 or higher systems. (14.25)

2 Note again that a simplified final-value expression such as the one stated in the preceding footnote but

for the case of a unit ramp input yields an identical result as obtained from Eq. (14.17), i.e.,

ess = lim
s→0

(
1

s

)

TE (s) = lim
s→0

(
1

s

)
1

1 + G (s) H (s)
= lim

s→0

1

sG (s) H (s)
.

3 Although the system does not reach a steady value for y, the time rate of change of y does reach a

steady state if the system is otherwise stable.

14.3. Steady-State Disturbance Sensitivity 361

Table 14.1. Values of the steady-state error, ess

Input

signal

Type 0

system

Type 1

system

Type 2

system . . .

Type N

system

Us(t) = 1 1/(1 + K) 0 0 0
Ut (t) = t ∞ 1/K 0 0
t2 ∞ ∞ 1/K 0
...

...
...

...
...

t N ∞ ∞ ∞ . . . 1/K

Table 14.1 summarizes the steady-state errors for systems of types 0–N when they

are subjected to inputs of order 0–N. When the order of the input signal (exponent

to which the variable t is raised) is equal to the type of the system, the steady-state

error is finite, as depicted by the values on the diagonal line in Table 14.1. When the

input signal is of a higher order when compared with the system type number, the

steady-state error approaches infinity. Finally, when the input is of an order that is

smaller than the type number of the system, the steady-state error is zero.

14.3 STEADY-STATE DISTURBANCE SENSITIVITY

Another important aspect of a control system’s performance is its sensitivity to dis-

turbances. Disturbances are all those other inputs that are not directly controlled by

feedback to a separate summing point in the system. Very often, disturbances are

difficult to measure, and so their presence can be detected only by observations of

variations in the process output signal that take place while the control input signal

is unchanged. Some of the most common disturbances are variations in load force or

torque in mechanical systems, variations in ambient temperature in thermal systems,

and variations in load pressure or load flow rate in fluid systems. A control system

should be capable of maintaining the process output signal at the desired level in the

presence of disturbances. In fact, as pointed out at the beginning of this chapter, it is

the presence of disturbances in the system environment that provides the rationale

for many closed-loop control systems.

When a disturbance changes suddenly, the system output signal deviates at least

temporarily from its desired value, even in the best-designed system. What is expected

from a well-designed control system is that, after the transients die out, the output

signal will return to its previous level. A system’s ability to compensate for the steady-

state effects of disturbances is determined quantitatively in terms of the steady-state

disturbance sensitivity SD, defined as the ratio of the change of the output �y to the

change of the disturbance �v at steady state:

SD =
�yss

�vss
. (14.26)

362 Control Systems

Gv(s)

Y(s)

V(s)

+

+

X(s)

(a) (b)

GOL(s) GOL(s)

Gv(s)

Y(s)

V(s)

+

++
−

X(s)U(s)

Figure 14.4. (a) Open-loop and (b) closed-loop systems subjected to disturbance V(s).

In the open-loop system shown in Fig. 14.4(a), the disturbance sensitivity can be

calculated with the final-value theorem, assuming that X(s) = 0:

SDO =
lim
s→0

sY (s)

lim
s→0

sV (s)
. (14.27)

Assuming that v(t) is a step function, Eq. (14.27) leads to the simplified final-value

expression:

SDO =
lim
s→0

s
1

s
Gv (s)

lim
s→0

s
1

s

= lim
s→0

Gv (s) = Gv (0) = KD, (14.28)

where KD is the static gain of Gv(s).

In the closed-loop system shown in Fig. 14.4(b), the output Y(s) for U(s) = 0

is

Y (s) =
V (s) Gv (s)

1 + GOL (s)
, (14.29)

and hence the sensitivity of the closed-loop system, SDC, for a step disturbance is

SDC =
Gv (0)

1 + GOL (0)
=

KD

1 + K
, (14.30)

where K is the steady-state gain of the open-loop transfer function GOL(s). When

Eqs. (14.28) and (14.30) are compared, it can be seen that the closed-loop sys-

tem is less sensitive to disturbance, SDC < SDO, if the steady-state gain K is

positive.

Example 14.1 illustrates the mathematical considerations just presented.

EXAMPLE 14.1

Consider a heating system for a one-room sealed-up house, shown schematically in Fig.

14.5. The house is modeled as a lumped system having contents of mass m and average

specific heat c. The rate of heat supplied by an electric heater is Qin(t). The spatial average

temperature inside the house is T1, and the ambient air temperature is T2. Determine

the effect of variation of T2 on T1 at steady state.

14.3. Steady-State Disturbance Sensitivity 363

Qloss

Qin

T2(t)

T2(t)

T1(t)

Tr

(Melting H2O

ice temperature)

Figure 14.5. House heating system from Example 14.1.

SOLUTION

The heat balance equation is

mc
dT1r (t)

dt
= Qin (t) − Qloss (t) . (14.31)

The rate of heat losses, Qloss, is given by

Qloss (t) = Uo [T1r (t) − T2r (t)] , (14.32)

where Uo is a heat loss coefficient. The heat balance equation becomes

mc
dT1r (t)

dt
= Qin (t) − Uo [T1r (t) − T2r (t)] . (14.33)

Transferring Equation (14.33) from the time domain into the domain of complex variable

s yields

(mcs + Uo) T1r (s) = Qin (s) + UoT2r (s)

or

T1r (s) =
Qin (s) + UoT2r (s)

mcs + Uo
. (14.34)

The block diagram of the system represented by Eq. (14.34) is shown in Fig. 14.6.

When Figs. 14.4(a) and 14.6 are compared, the disturbance and process transfer

functions for the open-loop system can be identified as

Gv (s) =
1

mc

Uo
s + 1

,

GOL (s) =

1

Uo
mc

Uo
s + 1

.

+

+

T2r(s)

Qin(s) T1r(s)

1

Uo

mc

Uo

s + 1

1
mc

Uo

s + 1

Figure 14.6. Block diagram of the open-loop
thermal system considered in Example 14.1.

364 Control Systems

+

+−

+

T2r(s)

Td(s)
Qin(s)

T1r(s)

1
Uo

mc
Uo

s + 1

1
mc
Uo

s + 1

kf

Figure 14.7. Block diagram of the closed-loop temperature control system considered in
Example 14.1.

Using Eq. (14.28), one can calculate the steady-state disturbance sensitivity as

SDO = lim
s→0

1
mc
Uo

s + 1
= 1. (14.35)

Equation (14.35) indicates that the change of ambient temperature by �T will cause the

change in the house temperature by the same value �T.

Now consider a closed-loop system in which the rate of heat supply is controlled to

cause the house temperature to approach the desired level, Td. The block diagram of

the closed-loop temperature control system is shown in Fig. 14.7. The rate of heat supply

Qin(t) is assumed to be proportional to the temperature deviation:

Qin (t) = kf [Td (t) − T1r (t)] .

By use of Eq. (14.30), the disturbance sensitivity in this closed-loop system is found to

be

SDC =
1

1 +
kf

Uo

,

where kf /Uo is the open-loop gain of the system. Because both kf and Uo are positive, the

sensitivity of the closed-loop system to variations in ambient air temperature is smaller

than that of the open-loop system. The greater the open-loop gain, the less sensitive the

closed-loop system is to disturbances.

14.4 INTERRELATION OF STEADY-STATE AND TRANSIENT CONSIDERATIONS

In Sections 14.2 and 14.3, it was shown that, to improve the system steady-state per-

formance, the open-loop gain has to be increased or an integration has to be added to

the open-loop transfer function. Both remedies will, however, aggravate the stability

problem. In general, the design of a system with more than two integrations in the

feedforward path is very difficult. A compromise between steady-state and transient

system characteristics is thus necessary. Example 14.2 illustrates this problem.

EXAMPLE 14.2

Examine the effect of the open-loop gain K on stability and steady-state performance of

the system shown in Fig. 14.8, which is subjected to unit ramp input signals.

14.5. Industrial Controllers 365

−

+
U(s)

E(s)
Y(s)

K

s(s + 1)(s + 5) Figure 14.8. Block diagram of the system
considered in Example 14.2.

SOLUTION

The open-loop sinusoidal transfer function is

G (j�) H (j�) = TOL (j�) =
K

j� (j� + 1) (j� + 5)
.

The real and imaginary parts of TOL (j�) are

Re [TOL (j�)] =
−6K

(�4 + 26�2 + 25)
,

Im [TOL (j�)] =
K

(

�2 − 5
)

(�5 + 26�3 + 25�)
.

The stability gain margin kg was defined in Chap. 13 as

kgdB = 20 log
1

∣

∣TOL

(

j�p

)∣

∣

,

where �p is such that

� TOL (j�p) = −180◦, or Im [TOL (j�)] = 0.

For this system, �p =
√

5 rad/s, and the gain margin in decibels is

kgdB = 20 log
30

K
.

Now, to examine the steady-state performance of the system subjected to a unit ramp

input u(t) = t , the static-velocity error coefficient must be determined. Using Equation

(14.22) for a type 1 system yields

Kv = lim
s→0

[

sK

s (s + 1) (s + 5)

]

=
K

5
,

and hence the steady-state error is

ess =
5

K
.

Figure 14.9 shows the system gain margin kgdB, static, velocity error coefficient Kv,

and steady-state error ess as functions of the open-loop gain K. Note that the system

is marginally stable for K = 30, at which the minimum steady-state error approaches

0.1667. Selecting values of K less than 30 will improve system stability at the cost of

increasing steady-state error.

14.5 INDUSTRIAL CONTROLLERS

In most process control applications, standard “off-the-shelf” devices are used to

obtain desired system performance. These devices, commonly called industrial con-

trollers, compare the actual system output with the desired value and produce a

366 Control Systems

kgdB

20

15

10
Gain

Stable Unstable

margin, kg
5

0
10 20

Open-loop gain, K

30 40 50
0

0.5

1.0

ess Kv

Kv

10

5

0

−5

Steady-state error, ess

Figure 14.9. Effect of the open-loop gain on stability gain margin kgdB, velocity error coefficient
Kv, and steady-state error ess.

signal to reduce the output signal deviation to zero or to a small value (Fig. 14.2).

The manner in which the controller produces the control signal in response to the

control error is referred to as a control algorithm or a control law. Five of the most

common control algorithms implemented by typical industrial controllers will now

be described.

14.5.1 Two-Position or On–Off Control

The control algorithm of the two-position controller is

u (t) =
{

M1 for e (t) > 0

M2 for e (t) < 0
. (14.36)

The relationship between the control signal u(t) and the error signal e(t) is shown in

Fig. 14.10. In many applications, the control signal parameters M1 and M2 correspond

to “on” and “off” positions of the actuating device. In an on–off temperature control

system, a heater is turned on or off depending on whether the process temperature

is below or above the desired level. In an on–off liquid-level control system, the

supply valve is either opened or closed depending on the sign of the control error. In

every two-position control system, the process output oscillates as the control signal

is being switched between its two values, M1 and M2. Figure 14.11 shows the output

u(t)

e(t)

M1

M2

Figure 14.10. Control signal versus error signal in two-position
control.

14.5. Industrial Controllers 367

Output temperature

Control signal

Time, s

Desired

temperature

Figure 14.11. Output temperature and control signal in an on–off control system.

and control signal of an on–off temperature control system. However, this system is

only piecewise linear.

14.5.2 Proportional Control

The signal produced by a proportional (P) controller is, as its name implies, propor-

tional to the control error:

u (t) = kpe (t) . (14.37)

The transfer function of the proportional controller is

TC (s) =
U (s)

E (s)
= kp. (14.38)

The steady-state performance and speed of response of a system with a proportional

controller improve with increasing gain kP. Increasing the controller gain may, how-

ever, decrease stability margins.

14.5.3 Proportional–Integral Control

The steady-state performance can also be improved by adding an integral action

to the control algorithm. The ideal proportional–integral (PI) controller produces a

control signal defined by the equation

u (t) = kp

[

e (t) +
1

Ti

∫ t

0

e (�) d�

]

. (14.39)

The ideal controller transfer function is

TC (s) = kp

(

1 +
1

Tis

)

. (14.40)

368 Control Systems

Adding integral control, although improving the steady-state performance, may lead

to oscillatory response (that is, reduced potential stability margin), which is usually

undesirable.

14.5.4 Proportional–Derivative Control

The stability of a system can be improved by the addition of a derivative action to the

control algorithm. The control signal produced by an ideal proportional–derivative

(PD) controller is

u(t) = kp

[

e(t) + Td
de (t)

dt

]

. (14.41)

The controller transfer function is4

TC (s) = kp (1 + Tds) . (14.42)

The derivative action provides an anticipatory effect that results in a damping of

the system response. When the stability margin is increased in this way, it becomes

possible to use a greater loop gain, thus improving speed of response and reducing

steady-state error.

The most significant drawback to derivative control action is that it tends to

amplify higher-frequency noise, which is often present in feedback signals because

of limitations of transducer performance.

14.5.5 Proportional–Integral–Derivative Control

All three control actions are incorporated in a proportional–integral–derivative

(PID) control algorithm. The control signal generated by an ideal PID controller

is

u(t) = kp

[

e(t) +
1

Ti

∫ t

0

e(�)d� + Td
de (t)

dt

]

. (14.43)

The transfer function of the ideal PID controller is

TC (s) = kp

(

1 +
1

Tis
+ Tds

)

. (14.44)

Determining optimal adjustments of the control parameters kp, Ti, and Td is one

of the basic problems faced by control engineers. The tuning rules of Ziegler and

Nichols5 provide one of the simplest procedures developed for this purpose. There

are two versions of this method: One is based on the process step response and the

other on characteristics of sustained oscillations of the system under proportional

4 The mathematical models given in Eqs. (14.41)–(14.44) for ideal controllers are not physically realizable.

All real controllers have a transfer function incorporating at least a fast first-order parasitic lag term

(1 + �ps) in the denominator. Inclusion of this lag term becomes important for programming the

controller for computer implementation.
5 J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Trans. ASME 64, 759

(1942).

14.5. Industrial Controllers 369

τpr

L

Δy(t)

Δyss = kpr

Maximum slope

1

R

R = kpr/τpr

t

Unit step response

of process

TC(s)

Controller Process

(a)

(b)

Y(s)

+
−

E(s)U(s)
TP(s)

TC(s) = kp (1 + + Tds)
Tis

1

TP(s) = kpr
τprs + 1

e−Ls

TP(0) = kpr

Figure 14.12. Determining controller parameters on the basis of the process step response: (a)
process response graph, (b) transfer function block diagram of system.

control at the stability limit. The first method, based on a delay-lag model of the

process, can be applied if process step response data are available in the form shown

in Fig. 14.12. The transfer function e−Ls for the time delay L is discussed in Chap. 15.

The controller parameters are calculated with the values of slope R and delay

time L of the unit step response, as follows:

� For a proportional controller,

kp =
1

RL
.

� For a PI controller,

kp =
0.9

RL
Ti = 3.3L.

� For a PID controller,

kp =
1.2

RL
Ti = 2L Td = 0.5L.

In the other method, the gain of the proportional controller in a closed-loop

system test, shown in Fig. 14.13(a), is increased until a stability limit is reached with

370 Control Systems

DeviationSet value

+
−

Test controller
with gain Ku

(a) (b)

Process
Output

Pu

t

Figure 14.13. Determining controller parameters on the basis of stability limit oscillations: (a) block
diagram of process with controller, (b) response with sustained oscillations.

a test controller gain Ku. The control parameters are then calculated on the basis of

this critical value of gain Ku and the resulting period of sustained oscillations Pu by

use of the following relations:

� For a proportional controller,

kp = 0.5Ku.

� For a PI controller,

kp = 0.45Ku Ti = 0.83Pu.

� For a PID controller,

kp = 0.6Ku Ti = 0.5Pu Td = 0.125 Pu.

It has to be emphasized that the rules of Ziegler and Nichols were developed

empirically and that the control parameters provided by these rules are not opti-

mal. However, they do give a good starting point from which further tuning can be

performed to obtain satisfactory system performance.

More advanced industrial controllers available on the market today are capable

of self-tuning – that is, of automatically adjusting the values of their control settings

to obtain the best performance with a given process.6

EXAMPLE 14.3

Figure 14.14 shows a block diagram of a feedback control system in which the transfer

function is the same as the one used in Examples 13.6 and 13.8 and is subsequently

repeated. For the purposes of this example, assume that the transfer function represents

the dynamics’ large-capacity material-handling system in which the input signal u(t) is

the desired position and the output signal y(t) is the actual, measured position of the

payload, measured in meters:

Tp (s) =
2

6s2 + 11s2 + 6s + 1
.

6 K. J. Aström and T. Hagglund, “Automatic tuning of PID regulators,” Instrument Society of America,

Research Triangle Park, NC, 1988.

14.5. Industrial Controllers 371

TP(s)
+

−

U(s) Y(s)
TC(s)

Figure 14.14. Feedback control structure for Example 14.3.

Design a controller to meet the following specifications:

� ess for step input = 0,
� no overshoot for step input,
� response to step input as rapid as possible.

The simplest controller is the proportional control described in Subsection 14.5.3:

TC (s) = kp.

The open-loop transfer function, combining the controller and the system under

control, is

G (s) = TC (s) TP (s) =
2kp

6s3 + 11s2 + 6s + 1
.

For a unit step input, the steady state error is determined according to Eq. (14.10):

ess = lim
s→0

1

1 + G (s)
=

1

1 + 2kp
.

This result indicates that, regardless of the value of kp, the specification for steady-

state error will never be met. Therefore a different control structure is desired. In

Subsection 14.5.3, the PI control law is presented. The main characteristic of this

control law is that it increases the type of the system and hence improves steady-

state performance. The original system is a type 0 system. If the controller is a PI

controller, then the combined system will be type 1, and, according to Table 14.1,

the steady-state error to a step input will be zero. To achieve the desired transient

response, further analysis is required.

The controller transfer function is

TC (S) = kp

(

1 +
1

Tis

)

,

and the combined open-loop transfer function is

G (s) =
2kp

Ti
(Tis + 1)

s (6s3 + 11s2 + 6s + 1)
.

As a starting point for the values of kp and Ti, the Ziegler–Nichols tuning rules

are used. Figure 14.15 shows a step response of the original system, computed with

MATLAB’s step command. Indicated on the plot are the values of R and L for this

response, as defined in Fig. 14.12.

From the plot in Fig. 14.15, the following characteristics can be measured:

L = 1.5 s,

R = 0.27 m/s.

372 Control Systems

2

1.8

1.6

1.4

1.2

1

P
o
si

ti
o
n
 R

es
p
o
n
se

 (
m

)

0.8

0.6

L

0.4

0.2

0
0 2 4 6 8 10

Time (s)

12 14 16 18

1

R

Figure 14.15. Step response of open-loop system for Example 14.3, showing the characteristics
required for Ziegler–Nichols tuning rules.

The Ziegler–Nichols tuning rules for PI controllers suggest the following values

for gains:

kp = 2.2,

Ti = 4.95 s.

To test whether or not the second design criterion is satisfied with these values,

the following steps in MATLAB will generate a closed-loop step response:

>> kp = 2.2

>> ti = 4.95 % set the gain values

>> num = 2*kp/ti*[ti 1];

>> den = [6 11 6 1 0];

>> tfol = tf(num, den) % establish the open–loop

%transfer function

>> tfcl = tfol/(1+tfol); % compute the closed–loop

%transfer function

>> tfcl = minreal(tfcl) % cancel poles and zeros

(see Section 11.7)

>> step(tfcl) % compute and plot step

%response

14.5. Industrial Controllers 373

1.8

1.6

1.4

1.2

1

0.8

P
o
si

ti
o
n
 R

es
p
o
n

se
 (

m
)

0.6

0.4

0.2

0
0 10 20 30 40 50

Time (s)

Step Response

60 70 80 90 100

Figure 14.16. Closed-loop step response for PI controller.

Figure 14.16 shows the step response for the tuning parameters computed with the

Zeigler–Nichols tuning rules.

The oscillatory behavior of the closed-loop system clearly violates the second

design constraint, that there be no overshoot. Note, however, that the first design

constraint, zero steady-state error to step input, is clearly met. Oscillatory behav-

ior can be mitigated by lowering the proportional gain factor. Through trial and

error and use of MATLAB’s commands to reevaluate the closed-loop transfer func-

tion and step response for various gain values, it was discovered that when kp is

reduced to a value of 0.48, the step response shows no overshoot, as demonstrated in

Fig. 14.17.

Finally, the third design criterion, that the response be as rapid as possible, is more

difficult to assess. How can it be determined if the response can be any quicker? Figure

14.15, for example, shows that the open-loop system can respond to a step input

in approximately 20 s. Experience with feedback control dictates that closed-loop

response can nearly always be more rapid than open-loop. Therefore the response

in Fig. 14.17 seems a bit sluggish.

The next step in the design process is to consider a PID control architecture, as

described in Subsection 14.5.5. The new combined open-loop transfer function is

G (s) =
2kp

Ti

(

TiTds2 + Tis + 1
)

s (6s3 + 11s2 + 6s + 1)
.

374 Control Systems

P
o
si

ti
o
n
 R

es
p
o
n

se
 (

m
)

Time (s)

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35

Step Response

Figure 14.17. Step response with reduced proportional control gain.

The Ziegler–Nichols tuning rules suggest the following starting place for the PID

parameters:

kp = 2.96,

Ti = 3.0 s,

Td = 0.75 s,

which lead to the closed-loop step response seen in Fig. 14.18.

Note that the system is somewhat less oscillatory than the first attempt with a

PI controller, but the overshoot is very high. As with the PI controller, the response

can be improved by adjustment of the three control parameters. The overall gain kp

must be reduced and the derivative term Td increased to eliminate the overshoot.

In addition, decreasing the value of Ti strengthens the integral action and helps

drive the system to its steady-state value. Although there are literally an infinite

number of parameter combinations that will bring this system in compliance with

the first two design goals, the following set of parameters result in the response seen in

Fig. 14.19:

kp = 1.25,

Ti = 1.6 s,

Td = 1.8 s.

14.5. Industrial Controllers 375

P
o
si

ti
o
n
 R

es
p
o
n

se
 (

m
)

Time (s)

1.5

1

0.5

0
0 5 10 15 20 25 30

Step Response

Figure 14.18. Step response with a PID controller.

P
o
si

ti
o
n
 R

es
p
o
n
se

 (
m

)

Time (s)

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18

Step Response

Figure 14.19. Step response with PID control after tuning.

376 Control Systems

In comparing the step responses obtained with the PI controller (Fig. 14.17) with

those obtained with the PID controller, it is important to note the change in time

scale on the two plots. The PID controller offers a far superior performance in the

speed of response and hence is a better choice in light of the third design criterion.

Example 14.4

Although the previous example portrays the manner in which control systems are often

designed in practice, the heuristic nature of the approach is unsatisfying for a number

of reasons. In particular, because there are three different parameters to adjust, each of

which has a unique contribution, the process of trial-and-error tuning is unlikely to arrive

at the very best, or optimal, set of controller parameters.

In this example, the problem of Example 14.3 is solved by use of a PID controller, but a

more directed approach is used to select the parameters. Recall that a PID controller gives

rise to a second-order polynomial in the numerator of the open-loop transfer function:

G (s) =
2kp

Ti

(

TiTds2 + Tis + 1
)

s (6s3 + 11s2 + 6s + 1)
.

The second-order numerator means that there are two zeros of the open-loop transfer

function. If those zeros are placed (by the appropriate selection of Ti and Td) in such a

way that they coincide with poles of the transfer function, those poles will, in effect, be

canceled. As long as the poles that are canceled are not the fastest poles in the system,

then overall dynamic performance will be improved. Further, as long as the pole at the

origin is not the one canceled, then the appropriate steady-state performance will not be

compromised as well. The poles of this transfer function are

0,

−0.3333,

−0.5,

−1.0.

Hence, if the controller parameters are chosen such that the zeros correspond with

the middle two poles, dynamic performance will be improved without sacrificing steady-

state behavior.

The second-order polynomial whose roots are −1/3 and −1/2 is

6s2 + 5s + 1.

When the coefficients are equated with the coefficients of the second-order polyno-

mial in the numerator of G(s), it is easy to solve for Ti and Td:

Ti = 5.0 s,

Td = 1.20 s.

Now the only remaining task is to choose the proportional gain kp. Again, a trial-

and-error approach could be used, this time much more easily because there is only one

parameter to vary and there is a high probability that one could achieve nearly optimal

performance for these choices of Ti and Td. However, the root-locus method provides a

more systematic approach.

14.5. Industrial Controllers 377

0.02

0.015

0.01

0.005

Im
ag

in
ar

y
 A

x
is

−0.005

−0.01

−0.015

−0.02
−1 −0.9 −0.8 −0.7 −0.6 −0.5

Real Axis

Root Locus

−0.4 −0.3 −0.2 −0.1 0

0

Figure 14.20. Root-locus plot of system with PID controller.

Begin with the new open-loop transfer function based on the new values of Ti and

Td:

G (s) =
0.4kp

(

6s2 + 5s + 1
)

s (6s3 + 11s2 + 6s + 1)
.

Now generate the root-locus plot for this transfer function and find the highest value of

kp for which the system shows no overshoot. In MATLAB, the root-locus plot of this

transfer function is easily generated, as shown in Fig. 14.20.

The plot is a little difficult to interpret because so much of the loci sit on the axes. The

×’s represent the four open-loop poles (at 0, −0.333, −0.5, and −1). The circles represent

the two zeros (chosen to cancel the poles at −0.333 and −0.5). The two loci begin at

the other poles (at kp = 0) and move toward each other until they meet at 0.5. At that

point, the loci depart from the real axis and move out vertically as kp approaches infinity.

The point of departure corresponds to a maximum value of kp for which there is no

overshoot. The value of gain that corresponds to zero overshoot is 0.625. Summarizing,

the PID parameters that should satisfy the design criteria are

Ti = 5.0 s,

Td = 1.2 s,

kp = 0.625.

378 Control Systems

P
o
si

ti
o
n
 R

es
p

o
n
se

 (
m

)

Time (s)

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18

Root Response

Figure 14.21. Step response of PID controller for root-locus design method.

Figure 14.21 shows the step response for the system obtained by use of these param-

eters. When compared with the step response of Fig. 14.19, the step response of Fig. 14.21

can be seen to be much smoother, and reaches steady state in approximately the same

time.

One final note is in order before leaving this example. The astute reader will note

that the much-touted Ziegler–Nichols tuning rules suggest a set of gains that appear quite

far from those that satisfy our design requirements. The reason lies in the assumptions

under which those tuning rules were developed. In particular, the system is assumed to

be dominated by a time delay and a first-order response. The system in this example is

a third-order system with no delay. At the time Ziegler and Nichols did their work, the

chemical process industry dominated the field of industrial control systems and the model

they assumed was a very good choice for a wide variety of systems under study. Finally,

however, it is important to point out that the tuning rules provided gains that led to a

stable response and provided a much better starting point for the design work than did a

random combination of gains.

14.6 SYSTEM COMPENSATION

In some applications it may be very difficult or even impossible to obtain both desired

transient and steady-state system performance by adjusting parameters of PID con-

trollers. In such cases, additional devices are inserted into the system to modify the

14.6. System Compensation 379

(a)

R(s) Y(s)TC(s) TP(s)Tcomp(s)
+

−

Controller Compensator Process

(c)

(b)

R(s) Y(s)TC(s) TP(s)

T2(s)

V(s)

Tv(s)

+ + +
+−

+
−

Controller
Process

R(s) Y(s)TC(s)
+

−

Controller

Tp(s)
+

−

Process

Compensator

Compensator 2

Disturbance

T1(s)

Compensator 1

Tcomp(s)

Figure 14.22. Block diagram of systems with (a) series, (b) feedback, and (c) feedforward compen-
sation.

open-loop characteristics and enhance the system performance. This technique is

called system compensation, and the additional devices inserted into the system are

called compensators. Unlike controllers, compensators are usually designed for spe-

cific applications and their parameters are not adjustable.

There are several ways of inserting a compensator into a control system.

Figure 14.22 shows block diagrams of control systems with series compensation

[Fig. 14.22(a)], feedback compensation [Fig. 14.22(b)], and feedforward compen-

sation [Fig. 14.22(c)]. The series structure is the most common and usually is the

simplest to design. A typical example of feedback compensation is a velocity feed-

back in a position control system. The feedforward compensation is used to improve

the system speed of response to disturbance when the disturbance is measurable.

380 Control Systems

R1

R2C1

(g)

(2)

(g)

(1)

eo(t) = e2g

iL = 0

ei(t) = e1g

Figure 14.23. Electrical lead compensator.

There are two types of series compensators: lead compensators and lag compen-

sators. The transfer function of the lead compensator is

Tlead (s) = �
�s + 1

��s + 1
, � < 1. (14.45)

Compensators can be made of mechanical, electrical, and fluid components. An

electrical lead compensator is shown in Fig. 14.23. The transfer function relating the

output voltage E2g(s) to the input voltage E1g(s) for this circuit when iL = 0 is

T (s) =
E2g (s)

E1g (s)
=

R2

R1 + R2

R1C1s + 1
R1 R2

R1+R2
C1s + 1

. (14.46)

When Eqs. (14.45) and (14.46) are compared, the parameters � and � are found to

be

� =
R2

R1 + R2
, (14.47)

� = R1C1. (14.48)

It can be noted that the value of � given by Eq. (14.47) is always smaller than

1 because R2 < (R1 + R2). The lead compensator is used primarily to improve

system stability. As its name indicates, this type of compensator adds a positive

phase angle (phase lead) to the open-loop system frequency characteristics in a

critical range of frequencies and thus increases the potential stability phase margin.

Also, by increasing the potential stability margin, the lead compensator allows for

further increasing of the open-loop gain to achieve good dynamic and steady-state

performance.7

The transfer function of the lag compensator when i1 = 0 is

Tlag (s) =
�s + 1

��s + 1
, � > 1. (14.49)

Figure 14.24 shows an electrical lag compensator. The transfer function of this circuit

is

T (s) =
E2g (s)

E1g (s)
=

R2C2s + 1

(R1 + R2) C2s + 1
, (14.50)

7 Thus, using a lead compensator accomplishes somewhat the same effect as using a PD controller, and

therefore the lead compensator is sometimes referred to as the “poor man’s” PD controller.

14.6. System Compensation 381

R1

R2

C2 (g)

(2)

(g)

(1)

(3)

iL = 0

eo(t) = e2gei(t) = e1g

Figure 14.24. Electrical lag compensator.

or, equally,

T (s) =
R2C2s + 1

R1+R2

R2
R2C2s + 1

. (14.51)

When Eqs. (14.49) and (14.51) are compared, the compensator parameters are found

to be

� =
R1 + R2

R2
, (14.52)

� = R2C2, (14.53)

where � is always greater than 1 because (R1 + R2) > R2.

The lag compensator improves steady-state performance of the system. System

stability may, however, be seriously degraded by the lag compensator.8

The advantages of each of the two types of compensators are combined in a lag–

lead compensator. An electrical lag–lead compensator is shown in Fig. 14.25. The

transfer function of this circuit for zero load, iL = 0, is

Tlag−lead (s) =
E2g (s)

E1g (s)

=
(R1C1s + 1) (R2C2s + 1)

[(R1C1s + 1) (R2C2s + 1) + s R1C2]
, (14.54)

or, equally,9

Tlag−lead (s) =
(

�1s + 1

�2s + 1

) (
��2s + 1

��1s + 1

)

, (14.55)

where

�1 = R1C1, (14.56)

�2 = R2C2, (14.57)

� = 1 +
R1C2

�1 − �2
, �1 > �2. (14.58)

8 Thus, using a lag compensator, especially when �� is very large, accomplishes somewhat the same effect

as using a PI controller, and therefore a properly designed lag compensator is sometimes referred to

as a “poor man’s” PI controller.
9 F. H. Raven, Automatic Control Engineering (McGraw-Hill, New York, 1987), pp. 530–2.

382 Control Systems

R1

R2

C2

C1

(g)

(1)
iL = 0

ei(t) = e1g

Figure 14.25. Electrical lag–lead compensator.

The lag–lead compensator is designed to improve both transient and steady-state

performances, and its characteristics are similar to those of the PID controller.

The passive electrical networks shown in Figs. 14.23–14.25 are inexpensive imple-

mentations of lead and lag compensators. However, the assumption that the load

current is zero (iL = 0) is often limiting. If the load current is nonzero, then the

compensator performance becomes degraded, or worse, unstable.

To avoid this problem, lead and lag compensation can be implemented with

operational amplifiers. Op-amps, as described in Chap. 7, are versatile electronic

devices that are easily incorporated into electronic designs. Figure 14.26 shows a

generic lead or lag compensator constructed from two op-amps, four resistors and

two capacitors. It is left as an exercise for the student to verify that the transfer

function for this circuit is

Eo (s)

Ei (s)
=

R4

R1

R1Cs + 1

R2Cs + 1
. (14.59)

To make a lead compensator, R1 has to be chosen greater than R2, and R4

has to be adjusted to achieve the appropriate overall gain of the compensator. Lag

compensators can be implemented by the choice of R2 to be larger than R1. A

combined lead–lag compensator can also be designed by use of just two op-amps.

Again, it is left as an exercise for the student to develop an appropriate design.

−

−

+
+R1

R2

R2

R4

C

ei

e

C

O

Figure 14.26. Generic lead or lag compensator implementation by use of op-amps.

Problems 14.1–14.2 383

14.7 SYNOPSIS

In previous chapters, the analysis of system transient performance, including stability,

was emphasized. In this chapter, two important aspects of the steady-state perfor-

mance were addressed. First, the steady-state control error was considered. It was

shown that the steady-state error depends on both the system transfer function and

the type of input signal.

A system is said to be of type r if there are r poles of the system open-loop

transfer function located at the origin of the complex plane, s = 0. A type r system

will produce zero steady-state errors if the input signal is a function of time of the

order of less than r, u(t) = t p, where p < r. If r = p, the steady-state error has a

finite value that depends on the gain of the open-loop transfer function; the greater

the gain, the smaller the steady-state error. If the input signal is proportional to time

raised to a power higher than the type of the system, p < r, the steady-state error is

infinity.

The second aspect of steady-state performance addressed in this chapter was

steady-state sensitivity to disturbances. It was shown that feedback reduces the effect

of external disturbances on the system output at steady state.

The steady-state performance and the speed of response of feedback systems

both usually improve when the system open-loop gain increases. On the other hand,

the system stability margins usually decrease and the system may eventually become

unstable when the open-loop gain is increased. A compromise is therefore neces-

sary in designing feedback systems to ensure satisfactory steady-state and transient

performances at the same time.

The most common algorithms used with industrial controllers (on–off, PI, PD,

and PID), and their basic characteristics, were presented. In general, the integral

action improves steady-state performance, whereas the derivative action improves

transient performance of the control system. Compensators, custom-designed con-

trol devices that complement the typical controllers to enhance the control system

performance, were also introduced.

PROBLEMS

14.1 The open-loop transfer function of a system was found to be

TOL (s) =
K

(s + 5) (s + 2)2
.

Determine the range of K for which the closed-loop system meets the following perfor-

mance requirements: (1) the steady-state error for a unit step input is less than 10% of

the input signal, and (2) the system is stable.

14.2 A simplified block diagram of the engine speed control system known as a flyball

governor, invented by James Watt in the 18th century, is shown in Fig. P14.2.

(a) Develop the closed-loop transfer function TCL (s) = �o (s) /�d (s) and write the

differential equation relating the actual speed of the engine �o (t) to the desired

speed �d (t) in the time domain.

384 Control Systems

(b) Find the gain of the hydraulic servo necessary for the steady-state value of the error

in the system, e (t) = �o (t) − �d (t), to be less than 1% of the magnitude of the step

input.

Ωd(s) Ωo(s)E(s)

+
−

Flyballs Servo

Steam

engine

110

s2
 + 150s + 12100

K

0.1s + 1

10

20s + 1

Figure P14.2. Block diagram of steam engine speed control system.

14.3 The block diagram of the system designed to control angular velocity � of a motor

shaft is shown in Fig. P14.3. The system parameters are

L = 100 mH, R = 12 � � = 68 V s/rad (or N m/amp),
J = 4 N m s2, B = 15 N m s,

where L and R are the series inductance and resistance of the armature of a dc motor,

respectively, J is the combined motor and load inertia, B is the combined motor and load

friction coefficient, and � is the electromechanical coupling coefficient.

α

Ω(s)

kT

+

− −

Ei(s)
+

−
+

1
Js + B

TL

α

Js + B

1

Ls + R

Figure P14.3. Block diagram of angular velocity control system.

(a) Determine the value of the tachometer gain kT for which the damping ratio of the

closed-loop system is greater than 0.5 and the system sensitivity to the load torque

TL is less than 2.0 × 10−3 rad/s N m.

(b) Find the steady-state control error for a unit step change in the input voltage, ei(t)

= Us(t), using the value of kT calculated in part (a).

14.4 The block diagram of the control system developed for a thermal process is shown

in Fig. P14.4.

(a) Determine the gain of the proportional controller kP necessary for the stability gain

margin kg = 1.2.

(b) Find the steady-state control error in the system when the input temperature changes

suddenly by 10 ◦C, Ti(t) = 10Us(t) by using the value of the proportional gain

obtained from the stability requirement in part (a).

Problems 14.4–14.7 385

+

−

Ti(s) To(s)

1

2s + 1

50

(10s + 1)(20s + 1)
kp

Controller Process

Thermocouple

Figure P14.4. Block diagram of temperature control system.

14.5 A system open-loop transfer function is

TOL (s) =
k

s2 (�s + 1)
.

Find the steady-state control error in the closed-loop system subjected to input u(t) =
t2. Express the steady-state error in terms of the static-acceleration error coefficient Ka,

defined as

Ka = lim
s→0

s2TOL (s) .

14.6 The block diagram of a control system is shown in Fig. P14.6. The process transfer

function, TP(s), is

TP (s) =
1

10s + 1
.

Compare the performance of the control system with proportional and PI controllers.

The controller transfer functions are

TC (s) = 9

for the proportional controller and

TC (s) = 9

(

1 +
1

1.8s

)

for the PI controller. In particular, compare the percentage of overshoot of the step

responses and the steady-state errors for a unit step input obtained with the two con-

trollers.

Y(s)U(s)
E(s)

TC(s) TP(s)
+

−

Figure P14.6. Block diagram of control system.

14.7 The process transfer function of the control system shown in Fig. P14.6 has been

found to be

TP (s) =
k

(�1s + 1) (�2s + 1)
.

Compare the damping ratios and the steady-state errors for a step input obtained in this

system with proportional and PD controllers. The controller transfer functions are

TC (s) = kp

386 Control Systems

for the proportional controller and

TC (s) = kp (1 + Tds)

for the ideal PD controller.

14.8 A position control system, shown in Fig. P14.8(a), is being considered for a large

turntable. The turntable is to be driven by a “torque motor” that provides an output

torque that is proportional to its input signal, using power supplied from a dc source to

achieve its inherent power amplification. One special requirement for the control system

is to minimize the effects of an external load torque that may act from time to time on

the turntable. The system has been modeled as shown in Fig. P14.8(b) to investigate the

use of a proportional controller for this task. The values of the system parameters are

km = 1.0 N m/V ka = 2.0 V/rad,
J = 3.75 N m s2, B = 1.25 N m s.

The general requirements for the steady-state performance of this system are as

follows:

(a) The steady-state error after a step input must be zero.

(b) The steady-state load sensitivity resulting from a step change in the load torque TL

is to be less than 0.1 rad/N m.

Ei(s)

TL(s)

Em(s)

Eo(s)

Θo(s)Ee(s)

+
−

−
+

Proportional

controller

Position

transducer

(b)

(a)

Torque motor

Position signal Position tranducer

Controller

dc

Power

supply

B

TL

Torque motor

Θo

Ωo
Turntable

ei ee

em

eo

+
−

kp

ka

km

Js2
 + Bs

1

Js2
 + Bs

Figure P14.8. Turntable position control system with position feedback.

Problems 14.8–14.13 387

Find the value of the controller gain kp required for achieving the desired steady-

state performance. Calculate the damping ratio and the natural frequency of the system

with this value of kp.

14.9 This problem is a continuation of Problem 14.8, which must be solved first. Con-

sider again the turntable control system shown in Fig. P14.8(a). To improve the degree

of damping of this system with the parameter values found in Problem 14.8, it is now

proposed to use the velocity transducer of gain kv. Figure P14.9 shows a block diagram

of the system developed to investigate the performance attainable with a proportional

controller augmented with an inner loop that is closed by velocity feedback to the torque

motor. In addition to the steady-state performance requirements stated in Problem 14.8,

the system must be stable, having a damping ratio of at least 0.5. Using the value of the

controller gain kp obtained in Problem 14.8. find the value of kv needed to achieve the

required damping ratio of 0.5. Check if all the steady-state and transient performance

requirements specified in Problem 14.8 and in this problem are satisfied in the redesigned

system. Also, compare the speeds of response obtained with the systems designed in these

two problems.

Ωo(s)Ωo(s)Ee(s)
Ei(s)

Eo(s)

kp

kv

+
− −

Controller

Velocity transducer

Position transducer

Torque motor

Em(s)

TL(s)

+ +

−
km

Js + B

1

Js + B

1
s

ka

Figure P14.9. Turntable position control system with position and velocity feedback.

14.10 Derive the transfer function for the compensator circuit shown in Fig. 14.26.

14.11 Starting with the design of the lead or lag compensator shown in Fig. 14.26, design

a lead–lag compensator with the addition of two capacitors. Derive the transfer function

for that lead–lag compensator.

14.12 For the third-order system in Examples 14.3 and 14.4, design a lead-lag compen-

sator to meet the same design goals.

14.13 Consider the system you modeled in Problem 4.16, shown in Fig. P14.13. Assume

that the dynamics of the motor is very slow compared with the dynamics of the mechan-

ical system (usually a very good assumption). We are going to develop a system to con-

trol the position of the large inertial mass (J2). Assume that we have a transducer on

the large mass, measuring �2, and that the gain of that transducer is unity (1 V implies

1 rad). Assume also that we can generate a voltage to command the system with the same

interpretation (1 V implies a desired position of 1 rad.)

388 Control Systems

J1

J2

B

K

Ti Ω1

 Ω2

,

Figure P14.13. Schematic representation of a drive system.

We will implement proportional control according to the following equation:

Ti = Kp (�d − �2) .

The following table lists the appropriate parameter values.

Parameter Value Units

J1 2.0 kg m2

J2 5.0 kg m2

B 10 N s/m

K 20,000 N m/rad

Answer the following questions about the system:

(a) What is the gain margin of the system? What is the maximum value of Kp that ensures

closed-loop stability?

(b) What value of Kp will give us a phase margin of 30◦?

(c) If the damping factor of the original system (B) was 10 times as high (100), what

would the be the answers to parts (a) and (b)?

(d) Using Simulink to simulate this system in closed loop and by observing the response

to a step input, choose the value of Kp that you think is best for a fast response but

minimal overshoot/oscillation.

15

Analysis of Discrete-Time Systems

LEARNING OBJECTIVES FOR THIS CHAPTER

15–1 To use the finite-difference approximation of a derivative to develop an approx-

imate discrete-time model corresponding to a continuous input–output model.

15–2 To derive discrete-time state models for linear dynamic systems.

15–3 To develop block diagrams of a digital control system including sampling and

holding devices.

15–4 To use the z transform to develop pulse transfer functions of discrete-time

systems.

15.1 INTRODUCTION

In almost all existing engineering systems, the system variables (input, output, state)

are continuous functions of time. The first 14 chapters of this book deal with this cat-

egory of systems, classified in Chap. 1 as continuous dynamic systems. The last two

chapters are devoted to discrete-time systems in which, according to the definition

given in Chap. 1, the system variables are defined only at distinct instants of time. It

may seem that there are not many such systems, and, indeed, very few examples of

intrinsically discrete engineering systems come to mind. There are, however, many

systems involving continuous subsystems that are classified as discrete because of

the discrete-time elements used to monitor and control the continuous processes.

Any system in which a continuous process is measured and/or controlled by a digital

computer is considered discrete. Although some variables in such systems are con-

tinuous functions of time, they are known only at distinct instants of time determined

by the computer sampling frequency, and therefore they are treated as discrete-time

variables.

The number of digital computer applications in data acquisition and control of

continuous processes has been growing rapidly over the past two decades; thus the

knowledge of basic methods available for analysis and design of discrete-time systems

is an increasingly important element of engineering education. This chapter and the

next provide introductory material on analysis and control of linear discrete-time

systems.

In Section 15.2, a problem of mathematical modeling of discrete-time systems is

presented. Both input–output and state forms of system models are introduced. The

process of discretization of continuous systems as a result of sampling at discrete-time

389

390 Analysis of Discrete-Time Systems

intervals is described in Section 15.3. Theoretical and practical criteria for selecting

the sampling frequency to ensure that no information relevant to the dynamics of the

continuous process is lost as a result of sampling are discussed. In Section 15.4, the z

transform is introduced. The concept of the pulse transfer function of discrete-time

systems defined in the domain of complex variable z is presented in Section 15.5.

A procedure for calculation of a response of a discrete-time system to an arbitrary

input is also outlined.

15.2 MATHEMATICAL MODELING

A discretized model of a continuous system uses a sequence of values of each con-

tinuous variable taken only at carefully chosen distinct increments of time1 (usu-

ally equal increments). A continuous variable x(t), for instance, is represented in

a discretized model by a sequence {x(k)}, k = 0, 1, 2, . . . , consisting of the values

x(0), x(T), x(2T), or, simply, x(0), x(1), x(2), Furthermore, the amplitude of a

signal in a discrete-time system may be quantized; that is, it may take only a finite

number of values, and in such a case the signal is called a digital signal. If the sig-

nal amplitude is not quantized, such a signal is referred to as a sampled-data signal.

In this introductory treatment of discrete-time systems, the effect of quantization is

neglected; thus no distinction will be made between digital and sampled-data signals.

Mathematical discrete-time models can be derived in either the form of an input–

output equation or in a state form. Just as in the case of continuous systems, both

forms of mathematical models of discrete-time systems are equivalent in terms of

the information incorporated in them. The decision of which form should be used

in modeling discrete-time systems depends on a particular application. The input–

output form is usually preferred in modeling low-order linear systems. The state-

variable form is used primarily in modeling higher-order systems and in solving

optimal control problems.

15.2.1 Input–Output Models

As mentioned in the previous section, discrete-time models are often derived by

discretizing continuous models. It may therefore be expected that a certain corre-

spondence exists between the two types of models. The connection between the

corresponding continuous and discrete-time models can best be illustrated by con-

sideration of simple first- and second-order models.

A linear first-order continuous input–output model equation is

a1
dy

dt
+ a0 y = b1

du

dt
+ b0u. (15.1)

A frequently used discrete-time model results from an approximate discretization

based on a finite-difference approximation of the state-variable time derivatives.

1 The choice of T will be discussed later in this chapter and in Chap. 16. See also discussion of choice of

�t in Chap. 5.

15.2. Mathematical Modeling 391

Equation (15.1) can be discretized if the continuous derivatives of input and out-

put variables are replaced with appropriate approximating quotients at the selected

time increments. A backward-difference approximation scheme for a derivative of a

continuous variable x(t) is

dx

dt

∣

∣

∣

∣

t=kT

≈
x(kT) − x[(k − 1)T]

T
. (15.2)

A simplified notation, i.e., x(k) instead of x(kT), will be used from now on for all

discrete-time variables. With this notation, approximation (15.2) can be rewritten

as

dx

dt

∣

∣

∣

∣

t=kT

≈
x(k) − x(k − 1)

T
. (15.3)

When the backward-difference approximation defined by approximation (15.3) is

applied to Eq. (15.1), the following first-order difference equation is obtained, which

will be used here as an approximate discretized model:

y(k) =
a1

a1 + a0T
y(k − 1) +

b1 + b0T

a1 + a0T
u(k) −

b1

a1 + a0T
u(k − 1), (15.4)

or, simply,

y(k) + g1 y(k − 1) = h0u(k) + h1u(k − 1), (15.5)

where g1, h0, and h1 are the parameters of this discrete-time model. By comparison of

Eqs. (15.4) and (15.5), these parameters can be expressed in terms of the parameters

of the continuous model:

g1 =
−a1

a1 + a0T
,

h0 =
b1 + b0T

a1 + a0T
, (15.6)

h1 =
−b1

a1 + a0T
.

A similar procedure can be applied to a linear second-order model of a contin-

uous system described by the differential equation

a2
d2 y

dt2
+ a1

dy

dt
+ a0 y = b2

d2u

dt2
+ b1

du

dt
+ b0u. (15.7)

A discrete approximation of a second derivative of a continuous variable x is

d2x

dt2

∣

∣

∣

∣

t=kT

≈
x(k) − 2x(k − 1) + x(k − 2)

T2
, (15.8)

which leads to the following discrete-time model:

y(k) + g1 y(k − 1) + g2 y(k − 2) = h0u(k) + h1u(k − 1) + h2u(k − 2), (15.9)

392 Analysis of Discrete-Time Systems

where

g1 =
−(2a2 + a1T)

a2 + a1T + a0T2
,

g2 =
a2

a2 + a1T + a0T2
,

h0 =
b2 + b1T + b0T2

a2 + a1T + a0T2
, (15.10)

h1 =
−(2b2 + b1T)

a2 + a1T + a0T2
,

h2 =
b2

a2 + a1T + a0T2
.

From Equations (15.5) and (15.9), it can be deduced that an nth-order approximate

discrete-time model can be presented in the form

y(k) + g1 y(k − 1) + · · · + gn y(k − n)

= h0u(k) + h1u(k − 1) + · · · + hnu(k − n), (15.11)

where some of the coefficients g1 (i = 1, 2, . . . , n) and h j (j = 0, 1, . . . , n) may be

equal to zero.

It should be realized that the connection between the corresponding contin-

uous and discrete-time models is rather symbolic. Although the parameters of the

discrete-time model can be expressed in terms of the parameters of the corresponding

continuous model for a given discretization method, that relationship is not unique.

By choice of different values of the sampling time T, different sets of discrete-time

model parameters are obtained, and each of these approximate discrete-time models

can be considered to be “corresponding” to the continuous model. The selection of

time T is not uniquely determined either and is usually based on a rule of thumb. One

such rule states that T should be smaller than one-fourth of the smallest time constant

of the continuous model. Another rule of thumb, developed for models producing

oscillatory step responses, recommends that the value of T be smaller than about

one-sixth of the period of the highest-frequency oscillation of interest. Obviously,

none of these rules is very precise in determining the value of the sampling time.

On the other hand, the order of the model is the same, regardless of whether

the modeling is performed in a continuous or in a discrete-time domain. And an

output variable of a discrete-time system at time t = kT, y(kT), can be expressed as

a function of n previous values of the output and m + 1 present and past values of

the input variable u, which can be written mathematically as

y(k) = f [y(k − 1), y(k − 2), . . . , y(k − n), u(k),

u(k − 1), . . . , u(k − m)]. (15.12)

For linear stationary systems, the input–output model takes the form of a lin-

ear difference equation [Eq. (15.11)]. A recursive solution of Eq. (15.11) can be

obtained for given initial conditions and a specified input sequence, u(k), k = 0, 1, . . . ,

as illustrated in Example 15.1.

15.2. Mathematical Modeling 393

EXAMPLE 15.1

Find the solution of the following input–output difference equation for k = 0, 1, . . . , 10:

y(k) − 0.6y(k − 1) + 0.05y(k − 2) = 0.25u(k − 1) + 0.2u(k − 2).

The input signal u(k) is a unit step sequence given by

u(k) =
{

0 for k < 0

1 for k = 0, 1, 2, . . . ,
.

The output sequence y(k) is initially zero:

y(k) = 0 for k < 0.

SOLUTION

The recursive solution of the given difference equation can be obtained in a step-by-step

manner, starting at k = 0 and progressing toward the final value of k = 10, as follows:

For k = 0, y(0) = 0.6y(−1) − 0.05y(−2) + 0.25u(−1)

+ 0.2u(−2) = 0,

For k = 1, y(1) = 0.6y(0) − 0.05y(−1) + 0.25u(0)

+0.2u(−1) = 0.25.

In a similar manner, the corresponding values of y(k) are calculated from the equation

y(k) = 0.6y(k − 1) − 0.05(k − 2) + 0.25u(k − 1)

+ 0.2u(k − 2) for k = 1, 2, . . . , 10.

A listing of a very simple MATLAB script for solving the difference equation con-

sidered in this example is as follows:

% y(k)—output

% u(k)—input

% t(k)—time index

% Set up the initial conditions

y(1) = 0.0;

y(2) = 0.25;

%

u(1) = 1.0; % input is the unit step

u(2) = 1.0;

%

t(1) = 0;

t(2) = 1;

%

% set up loop to solve the difference equation for the next

% nine time steps

%

for k = 3:11

u(k) = 1.0;

t(k) = k−1;

394 Analysis of Discrete-Time Systems

1.0

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6 7 8 9 10

k

y(k)

u(k)

Figure 15.1. Solution of the difference equation considered in Example 15.1.

%

y(k) = 0.6*y(k − 1) − 0.05*y(k − 2) + 0.25*u(k − 1) + 0.2*u(k − 2);

%

end;

%

plot (t,y, ’x’, t, u, ’o’)

The plots of u(k) and y(k) are shown in Fig. 15.1.

15.2.2 State Models

The basic concept and definitions associated with state models of discrete-time sys-

tems are the same as those used in modeling continous systems.

To derive a state model for a linear system described by an nth-order input–

output equation [Eq. (15.11)], first an auxiliary discrete-time variable x is introduced;

this satisfies a simplified input–output equation in which all coefficients on the right-

hand side except h0 are assumed to be zero, that is,

x(k + n) + g1x(k + n − 1) + · · · + gnx(k) = u(k). (15.13)

The following set of n discrete-time state variables is then selected:

q1(k) = x(k),

q2(k) = x(k + 1) = q1(k + 1),

q3(k) = x(k + 2) = q2(k + 1).

(15.14)

Equations (15.14) yield n – 1 state equations:

q1(k + 1) = q2(k),

q2(k + 1) = q3(k)
...

qn−1(k + 1) = qn(k).

(15.15)

15.2. Mathematical Modeling 395

To obtain the nth state equation, first note that the last of Eqs. (15.14) for k = k + 1

becomes

qn(k + 1) = x(k + n). (15.16)

Substituting x(k + n) from Eq. (15.13) gives the nth state equation:

qn(k + 1) = −g1qn(k) − g2qn−1(k) − · · · − gnq1(k) + u(k). (15.17)

Hence a complete state model for a discrete system is

⎡

⎢

⎢

⎢

⎣

q1(k + 1)

q2(k + 1)
...

qn(k + 1)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 1 0 · · · 0

0 0 1 · · · 0

−gn −gn−1 · · · −g1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

q1(k)

q2(k)
...

qn(k)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0

0
...

1

⎤

⎥

⎥

⎥

⎦

u(k), (15.18)

or, in a more compact form,

q(k + 1) = Gq(k) + hu(k), (15.19)

where q is the state vector, G is the system matrix, h is the input vector, and u(k) is

an input signal.

The preceding state model was derived with all but one of the terms on the

right-hand side of Eq. (15.11) neglected. To incorporate these terms into the system

representation, an output model is derived relating the output variable y(k) to the

discrete-time state vector q(k) and the input variable u(k). The procedure followed

in the derivation is very similar to that used in Chap. 3 to derive the output model

for continuous systems described by input–output equations that involve derivatives

of input variables. The resulting output equation for a discrete-time model is

y(k) = [(hn − h0gn) (hn−1 − h0gn−1) · · · (h1 − h0g1)]

⎡

⎢

⎢

⎢

⎣

q1(k)

q2(k)
...

qn(k)

⎤

⎥

⎥

⎥

⎦

+ h0u(k). (15.20)

A complete state model of a single-input, single-output discrete system, described

by Eq. (15.11), can now be presented in the following form:

q(k + 1) = Gq(k) + hu(k),

y(k) = pTq(k) + ru(k), (15.21)

where r = h0 and column vector p is

p =

⎡

⎢

⎢

⎢

⎣

(hn − h0gn)

(hn−1 − h0gn−1)
...

(h1 − h0g1)

⎤

⎥

⎥

⎥

⎦

. (15.22)

It is interesting to note that the set of discrete-time state variables is not the

same as the set of discretized continuous system state variables. The discrete-time

state variables are successively advanced versions of the output y(k), whereas the

396 Analysis of Discrete-Time Systems

continuous system state variables are successively differentiated versions of the

output y(t). Corresponding solution techniques thus involve successive time delays

between the discrete-time variables and successive integrations between the continu-

ous system variables chosen in this way. The procedure just presented is illustrated in

Example 15.2.

EXAMPLE 15.2

Derive a state model for the discrete system considered in Example 15.1.

SOLUTION

The input–output equation of the system can be written in the form

y(k + 2) − 0.6y(k + 1) + 0.05y(k) = 0.25u(k + 1) + 0.2u(k).

Define the state variables as

q1(k) = y(k),

q2(k) = y(k + 1).

An auxiliary variable x(k) is introduced such that

x(k + 2) − 0.6x(k + 1) + 0.05x(k) = u(k).

The state equations take the form
[

q1(k + 1)

q2(k + 1)

]

=
[

0 1.0

−0.05 0.6

] [

q1(k)

q2(k)

]

+
[

0

1

]

u(k).

The output equation is

y(k) = [0.2 0.25]

[

q1(k)

q2(k)

]

.

15.3 SAMPLING AND HOLDING DEVICES

Most systems classified as discrete-time systems involve discrete as well as continuous

components: An example of such a system is a digital control system, shown in block-

diagram form in Fig. 15.2. In this system, a digital device is used to control a continuous

process.

Figure 15.3 shows the signals appearing in the system using the digital PID algo-

rithm to control a third-order process.

The digital controller generates a discrete-time control signal and accepts only

discrete input signals. The continuous process produces a continuous output signal

T

−

+

y(t)
u(k) u(t)e(k)

x(k)

y(k)

Holding

 device

 Digital

controller
Continuous

process

Figure 15.2. Block diagram of a digital control system with a continuous process.

15.3. Sampling and Holding Devices 397

u(t)

1.5

1.0

0.5

0
0

y(k)

1.5

1.0

0.5

8 16 24 32 40

0
0

8 16 24 32 40

u(k)

1.5

1.0

0.5

0
0

8 16 24 32 40

y(t)

1.5

1.0

0.5

0
0

8 16 24 32 40

Time, sTime, s

Time, s Time, s

Figure 15.3. Control and output signals in the system shown in Fig. 15.2.

and can be effectively manipulated by a continuous input signal. Interface devices

capable of transforming continuous signals into discrete signals and vice versa are

therefore necessary to create compatibility between a digital controller and a contin-

uous process. The two devices, a sampling device that converts a continuous signal

into a discrete-time signal and a holding device that performs the opposite signal

conversion, are now described.

The sampling device allows the continuous input signal to pass through at distinct

instants of time. In an actual sampler, the path for the input signal remains open for

a finite period of time �, as illustrated in Fig. 15.4(a). It is usually assumed that �

is much smaller than the sampling period T; as a result, the output signal from a

sampling device is presented by the strengths of a sequence of impulses, as shown in

Fig. 15.4(b). The strength of an impulse is defined here as the area of the impulse.

0 T 2T 3T 4T
t

Actual sampler

0 T 2T 3T 4T
t

Ideal sampler

∆

(a) (b)

Figure 15.4. Input and output signals in (a) actual and (b) ideal sampling devices.

398 Analysis of Discrete-Time Systems

Think of the sampled signal x*(t) obtained from a continuous signal x(t) as the

result of modulation of x(t) with a gating function Gs(t). Then

x∗(t) = Gs(t)x(t) (15.23)

when the function Gs(t) is equal to 1 at t = 0, T, 2T, . . . , and zero elsewhere.

Some authors2 use Dirac’s delta function to describe x*(t) mathematically. The

mathematical formula representing an idealized sampled signal [Fig. 15.4(b)] is

x∗(t) =

∞
∑

k=0

x(kT)Ui(t − kT), (15.24)

where Dirac’s delta function, introduced in Section 4.3, is defined as a unit impulse

having area of unity:

Ui(t − kT) =

{

0 for t �= kT

∞ for t = kT
, (15.25a)

lim
�→0

∫ kT+�

kT

Ui(t − kT)dt = 1. (15.25b)

Equation (15.24) describes a sampled signal x*(t) in terms of a series of impulses such

that the strength of each impulse is equal to the magnitude of the continuous signal

at the corresponding instant of time, t = kT, k = 0, 1, 2,. . . , that is,
∫ +∞

−∞

x(t)Ui(t − kT)dt = x(kT). (15.26)

Remember that, as pointed out in Chap. 4, although Dirac’s delta function represents

a useful mathematical idealization, it cannot be generated physically.

Intuitively, it seems that a certain loss of information must occur when a con-

tinuous signal is replaced with a discrete signal. However, according to Shannon’s

theorem,3 a continuous, band-limited signal of maximum frequency �max can be

recovered from a sample signal if the sampling frequency �s is greater than twice the

maximum signal band frequency, that is, if

�s > 2�max, (15.27)

or, in terms of the sampling period T, if

T < �/�max. (15.28)

In digital control practice, the value of T should be less than 1/(2 �max). Half of the

frequency that satisfies inequality (15.27), �s/2, is often referred to as the Nyquist

frequency.4 Selecting sampling frequency on the basis of the condition imposed by

inequality (15.27) is difficult in practice because real signals in engineering systems

have unlimited frequency spectra; hence, determining the value of �max involves some

uncertainty. Note also that the sampling frequency used in digital control systems

2 G. F. Franklin, J. D. Powell and M. Workman, Digital Control of Dynamic Systems, 3rd ed. (Addison

Wesley Longman, Menlo Park, CA, 1998).
3 C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (University of Illinois

Press, Urbana, IL, 1949).
4 Franklin et al., op cit., p. 163.

15.3. Sampling and Holding Devices 399

Ts

Tc

Ta

Time

Figure 15.5. Aliasing as a result of sampling frequency �s < 2�c.

can be higher than the frequency determined from Shannon’s theorem because its

selection is based on different criteria. The problem of selecting a sampling frequency

in digital control systems will be discussed in more detail in Chap. 16.

A serious problem, called aliasing, occurs as a result of sampling if the sampling

frequency is too small. Aliasing is manifested by the presence of harmonic compo-

nents in the sampled signal that are not present in the original continuous signal. The

frequency of the aliasing harmonics is

�a = �s − �c (15.29)

where �c is a frequency of the continuous signal. Aliasing is illustrated in Fig. 15.5,

where a sinusoidal signal of frequency �c (and period Tc) is sampled with frequency

�s = 4/3 �c, which corresponds to period Ts = (3/4)Tc and is less than the sampling

frequency required by the Shannon theorem. As a result, an alias sinusoidal signal is

generated with a frequency of �a = �s − �c = 1/3 �c and a period of Ta = 3Tc.

To prevent aliasing from affecting the sampled signal, the sampling frequency

should be high enough, which is easier to accomplish with a continuous signal if it is

processed by a low-pass filter before sampling. The bandwidth of such an antialiasing

low-pass filter should be higher than the bandwidth of the sampled signal.

A holding device is used to convert sampled values (such as a control sequence

generated by a digital controller) into signals that can be applied to continuous

systems. Operation of a holding device can be thought of as an extrapolation of past

values of the discrete-time signal over the next sampling period. Mathematically, for

nth-order extrapolation, the output signal from a holding device, xh(t) for time t such

that kT < t < (k + 1)T, can be expressed as

xh(t) = x(kT) + a1� + a2� 2 + · · · + an� n, (15.30)

where 0 < � < T. The coefficients a1, a2, . . . , an have to be estimated, by use of n

past values of x(k). In digital control practice, the simplest holding device – the one

that maintains the last value over the next sampling period – is used. This device, a

zero-order hold (ZOH), is described by

xh(kT + �) = x(kT) for 0 ≤ � < T. (15.31)

In general, a staircase signal xh(t) that has the same form as u(t) shown in Fig. 15.3

can be expressed mathematically as the summation

xh(t) =

∞
∑

k=0

x(kT){Us(t − kT) − Us[(k + 1)T]}, (15.32)

400 Analysis of Discrete-Time Systems

where Us is a unit step function. The transfer function of the ZOH can be found by

use of summation (15.32):

Th(s) =
Xh(s)

X∗(s)
=

1 − e−sT

s
, (15.33)

where Xh(s) and X*(s) are Laplace transforms of output and input signals of the

ZOH, respectively. It can be seen in Eq. (15.33) that the ZOH involves nontrivial

dynamics that may have a significant effect on performance of the discrete system

incorporating a continuous process. Very often, the dynamics of the holding device

and the dynamics of the process are combined to obtain a single-block “equivalent”

process.

15.4 THE z TRANSFORM

As discussed in Section 15.2, difference equations describing discrete-time systems

are usually solved recursively – that is, in a step-by-step manner – starting with the

initial conditions and progressing toward the final time. This method, although quite

effective when applied with a computer, does not produce a closed-form solution,

which is often needed in analysis of system dynamics. The z transform provides a

useful tool that allows difference equations derived in the time domain to be trans-

formed into equivalent algebraic equations in the domain of a complex variable z.

The algebraic equations in the z domain are usually much easier to solve than the

original difference equations. By application of the inverse z transform, closed-form

solutions of the model difference equations can be obtained. Moreover, there are

many powerful methods for analysis of discrete-time systems in the z domain. Most

of these methods, by the way, are analogous to corresponding methods for analysis

of continuous systems in the s domain.

15.4.1 Definition and Basic z Transforms

The z transform of sequence x(kT) such that x(kT) = 0 for k < 0 is defined as follows:

X(z) = Z{x(kT)} =

∞
∑

k=0

x(kT)z−k. (15.34)

Because of the assumption that x(kT) is equal to zero for negative k, the z transform

defined in Eq. (15.34) is referred to as the one-sided z transform. It can be noted that

X(z) is a power series of z−1:

X(z) = x(0) + x(T)z−1 + x(2T)z−2 + · · · + . (15.35)

Example 15.3 demonstrates how Eq. (15.34) can be used to find z transforms of

functions representing typical input and output signals in linear discrete-time systems.

15.4. The z Transform 401

EXAMPLE 15.3

Find z transforms of the following functions.

(a) A unit step function defined as

x(k) = Us(kT) =
{

0 for k < 0

1 for k > 0
.

Using the definition of the z transform given in Eq. (15.34), we obtain

X(z) =
∞
∑

k−0

1 (z−k) =
1

1 − z−1
=

z

z − 1
.

Note that X(z) converges if |z| > 1. In general, in calculating z transforms it is not

necessary to determine the region of convergence of X(z); it is sufficient to know

that such a region exists.

(b) A unit ramp function defined as

x(k) =

{

0 for k < 0

kT for k ≥ 0
.

Using Eq. (15.34), we obtain

X(z) =

∞
∑

k=0

kTz−k = T(z−1 + 2z−2 + 3z−3 + · · · +

= Tz−1(1 + 2z−1 + 3z−2 + · · · +

=
Tz1

(1 − z−1)2
=

Tz

(z − 1)2
.

(c) A Kronecker delta function defined as

x(k) =

{

1 for k = 0

0 for k �= 0
.

Using Eq. (15.34), we obtain

X(z) = (1 · z−0) + (0 · z−1) + (0 · z−2) + · · · = 1.

(d) A power function defined as

x(k) =

{

0 for k < 0

akT for k ≥ 0
.

Again, using Eq. (15.34), we find the z transform to be

X(z) =

∞
∑

k=0

akTz−k =

∞
∑

k=0

(a−Tz)−k =
1

1 − aTz−1
=

z

z − aT
.

A special case of the power function is the exponential function defined as

x(k) =

{

0 for k < 0

e−bkT for k ≥ 0
,

for which the z transform is

X(z) =
1

1 − e−bTz−1
=

z

z − e−bT
.

More z transforms of selected discrete functions can be found in Appendix 2.

402 Analysis of Discrete-Time Systems

15.4.2 z-Transform Theorems

Several basic theorems of the z transform – those that are most useful in analysis

of discrete-time systems – are introduced in this subsection. For proofs of these

theorems, the reader is referred to the textbook by Ogata.5

(a) Linearity:

Z{a1 f1(kT) + a2 f2(kT)} = a1Z{ f1(kT)} + a2Z{ f2(kT)}. (15.36)

(b) Delay of argument:

Z{ f (k − n)T} = z−n
Z{ f (kT)} for n > 0. (15.37)

(c) Advance of argument:

Z{ f (k + n)T} = zn

[

Z{ f (kT)} −
n−1
∑

k=0

f (kT)z−k

]

. (15.38)

(d) Initial-value theorem:

f (0+) = lim
z→∞

F(z), (15.39)

provided lim
z→∞

F(z) exists.

(e) Final-value theorem:

lim
k→∞

f (kT) = lim
z→1

(z − 1)F(z), (15.40)

provided f(kT) remains finite for k = 0, 1, 2,

15.4.3 Inverse z Transform

It was mentioned earlier that one of the main applications of the z transform is in

solving difference equations. Once the closed-form solution in the z domain is found,

it must be transformed back into the discrete-time domain by use of the inverse z

transform. The following notation is used for the inverse z transform:

f (k) = f (kT) = Z
−1{F(z)} (15.41)

In analysis of discrete-time systems, the function to be inverted is usually in the form

of the ratio of polynomials in z−1:

F(z) =
b0 + b1z−1 + · · · + bmz−m

1 + a1z−1 + · · · + anz−n
. (15.42)

5 K. Ogata, Discrete-Time Control Systems (Prentice-Hall, New York, 1995).

15.4. The z Transform 403

By direct division of the numerator and denominator polynomials, a series is

obtained:

C(z) = c0 + c1z−1 + c2z−2 + · · · + . (15.43)

When this form is compared with the definition of the z transform, Eq. (15.34), the

values of the sequence f(k) can be found:

f (0) = c0, f (1) = c1, f (2) = c2, (15.44)

In general, the direct method does not yield a closed-form solution and is practical

only if no more than the first several terms of the sequence f(k) are to be found.

The most powerful method for calculation of inverse z transforms is the partial

fraction expansion method. In this method, which is parallel to the method used in the

inverse Laplace transformation, function F(z) is expanded into a sum of simple terms,

which are usually included in tables of common z transforms. Because of linearity of

the z transform, the corresponding function f(k) is obtained as a sum of the inverse

z transforms of the simple terms resulting from the partial fraction expansion. The

use of the partial fraction expansion method is demonstrated in Examples 15.4 and

15.5.

EXAMPLE 15.4

Find the inverse z transform of the function

F(z) =
z(z + 1)

(z2 − 1.4z + 0.48)(z − 1)
. (15.45)

First, the denominator of F(z) must be factored. The roots of the quadratic term in the

denominator are 0.6 and 0.8; hence the factored form is

F(z) =
z(z + 1)

(z − 0.6)(z − 0.8)(z − 1)
. (15.46)

When F(z) has a zero at the origin, z = 0, it is convenient to find a partial fraction expansion

for F(z)/z. In this case,

F(z)

z
=

z + 1

(z − 0.6)(z − 0.8)(z − 1)
, (15.47)

and the expanded forms is

F(z)

z
=

c1

z − 0.6
+

c2

z − 0.8
+

c3

z − 1
. (15.48)

If all poles of F(z), Eq. (15.46), are of multiplicity 1, the constants ci are calculated as

ci =
(z − zi)F(z)

z

∣

∣

∣

∣

z=zi

, (15.49)

where zi are the poles of F(z). By use of Eq. (15.49), the expanded form of F(z)/z is found

to be

F(z)

z
=

20

z − 0.6
−

45

z − 0.8
+

25

z − 1
. (15.50)

404 Analysis of Discrete-Time Systems

Multiplying both sides of Eq. (15.50) by z yields

F(z) =
20z

z − 0.6
−

45z

z − 0.8
+

25

z − 1
. (15.51)

The inverse z transforms of each of the three terms on the right-hand side of Eq. (15.51)

can be found easily to obtain the solution in the discrete-time domain:

f (k) = (20 × 0.6k) − (45 × 0.8k) + 25. (15.52)

The final-value theorem can be used to verify the solution for k approaching infinity.

When k approaches infinity, the first two terms on the right-hand side of Eq. (15.52)

approach zero, and thus the final value of f (k) is 25. Applying the final-value theorem to

Eq. (15.45) produces

lim
k→∞

f (k) = lim
z→1

(z − 1)F(z) = lim
z→1

z(z + 1)

z2 − 1.4z + 0.48
= 25, (15.53)

which verifies the final value of the solution.

EXAMPLE 15.5

Find the inverse z transform of the function

F(z) =
z(z + 2)

(z − 1)2
.

Because F(z) has a zero at z = 0, it is convenient to expand F(z)/z rather than F(z). The

expanded form is

F(z)

z
=

c1

z − 1
+

c2

(z − 1)2
, (15.54)

where the constants c1 and c2 are

c1 =

[
d

dz

(z − 1)2F(z)

z

]

z=1

= 1,

c2 =

[
(z − 1)2F(z)

z

]

z=1

= 3.

Thus the expanded form of F(z) is

F(z) =
z

(z − 1)
+

3z

(z − 1)2

or

F(z) =
1

1 − z1
+

3z−1

(1 − z−1)2
. (15.55)

The inverse transforms of the terms on the right-hand side of Eq. (15.55) are found in the

table of z transforms given in Appendix 2 and yield the solution for f (k):

f (k) = 1(k) + 3k. (15.56)

The final-value theorem cannot be applied in this case to verify the solution because F(z)

in Eq. (15.53) has a double pole at z = 1 and thus f (k) does not remain finite for k = 0,

1, 2, As will be shown in Chap. 16, for f (k) to remain finite for k = 0,1,2, . . . , it is

necessary that all poles of F(z) lie inside the unit circle in the z plane, with the possible

exception of a single pole at z = 1.

15.5. Pulse Transfer Function 405

15.5 PULSE TRANSFER FUNCTION

Another form of mathematical model of a linear discrete-time system, in addition

to the input–output and state models introduced in Section 15.2, is a pulse transfer

function. For a system with input u(k) and output y(k), the pulse transfer function is

defined as the ratio of z transforms of y(k) and u(k) for zero initial conditions:

T(z) =
Y(z)

U(z)
, (15.57)

where U(z) and Y(z) are z transforms of u(k), and y(k), respectively. The pulse

transfer function for a system described by Eq. (15.11) is

T(z) =
h0 + h1z−1 + · · · + hmz−m

1 + g1z−1 + · · · + gnz−n
. (15.58)

In general, the pulse transfer function for an engineering discrete-time system takes

the form of the ratio of polynomials in z−1. Equation (15.58) can be rewritten as

T(z) =
H(z−1)

G(z−1)
, (15.59)

where

G(z−1) = 1 + g1z−1 + · · · + gnz−n, (15.60)

H(z−1) = h0 + h1z−1 + · · · + hmz−m. (15.61)

The pulse transfer function is obtained by application of the z transform to the system

input–output equation, as depicted in Fig. 15.6. Note that the form of the pulse

transfer function is not affected by the shifting of the argument of the system input–

output equation, provided the system is initially at rest. In particular, the transfer

function obtained from Eq. (15.11) is the same as the transfer function derived from

y(k + n) + g1 y(k + n − 1) + · · · + gn y(k)

= h0u(k + n) + h1u(k + n − 1) + · · · + hmu(k + n − m),

(15.62)

provided both u(k) and y(k) are zero for k < 0. This property of the pulse transfer

function is illustrated in the following simple example.

EXAMPLE 15.6

Consider the system in Example 15.1. Find the pulse transfer function T(z) for the system

having the input–output equation

y(k) − 0.6y(k − 1) + 0.05y(k − 2) = 0.25u(k − 1) + 0.2u(k − 2).

Y(z)
y(k) U(z)

u(k)
Input-output

model

Pulse transfer

function
Z

Figure 15.6. Obtaining the pulse transfer function from input–output model.

406 Analysis of Discrete-Time Systems

SOLUTION

Taking the z transform of both sides of this equation yields

Y(z) − 0.6z−1Y(z) + 0.05z−2Y(z) = 0.25z−1U(z) + 0.2z−2U(z). (15.63)

Hence the system pulse transfer function is

T(z) =
Y(z)

U(z)
=

0.25z−1 + 0.2z−2

1 − 0.6z−1 + 0.05z−2
. (15.64)

Now, shift the argument of the original input–output equation by two steps to yield

y(k + 2) − 0.6y(k − 1) + 0.05y(k − 2) = 0.25u(k + 1) + 0.2u(k). (15.65)

Transforming Eq. (15.65) into the z domain produces

z2Y(z) − z2 y(0) − y(1)z − 0.6zY(z) + 0.6zy(0) + 0.05Y(z)

= 0.25zU(z) − 0.25zu(0) + 0.2U(z). (15.66)

To determine y(0) and y(1), substitute first k = −2 and then k = −1 into Eq. (15.65). For

k = −2,

y(0) − 0.6y(−1) + 0.05y(−2) = 0.25u(−1) + 0.2u(−2).

It is assumed here that both u(k) and y(k) are zero for k < 0, which yields

y(0) = 0.

For k = −1, Eq. (15.65) is

y(1) − 0.6y(0) + 0.05y(−1) = 0.25u(0) + 0.2u(−1),

and hence

y(1) = 0.25u(0) = 0.25.

Now substitute y(0) = 0, y(1) = 0.25, and u(0) = 1 into Eq. (15.66) to obtain

z2Y(z) − (z2 × 0) − 0.25z − 0.6zY(z) + (0.6 × z × 0) + 0.05Y(z)

= 0.25zU(z) − (0.25 × z × 1) + 0.2U(z)

The resulting transfer function is

T(z) =
Y(z)

U(z)
=

0.25z + 0.2

z2 − 0.6z + 0.05
. (15.67)

Multiplying the numerator and denominator of Eq. (15.67) by z−2 gives

T(z) =
0.25z−1 + 0.2z−1

1 − 0.6z−1 + 0.05z−2
,

which is the same as Eq. (15.64), obtained from the original input–output equation.

A response of a linear discrete-time system to a discrete impulse function as

defined in Example 15.3(c) is called a weighting sequence. The z transform of the

discrete impulse function is equal to 1, and thus the z transform of the weighting

sequence is

Y(z) = T(z) · 1 = T(z). (15.68)

15.6. Synopsis 407

The weighting sequence is thus given by an inverse z transform of the system pulse

transfer function T (z):

Z
−1{T(z)} = w(k). (15.69)

The weighting sequence of a discrete-time system, as do most of the other terms

introduced in this chapter, has its analogous term in the area of continuous systems –

the impulse response. Although this analogy between various aspects of continuous

and discrete-time systems is, in most cases, clearly drawn and very useful, it should be

taken with caution. One such example is an analogy between the relationships involv-

ing a continuous function of time f(t) and its Laplace transform F(s) versus a discrete

function f(k) and its z transform F(z): By applying an inverse Laplace transforma-

tion to F(s), the same continuous function f(t) is obtained. A discrete function f(k)

obtained by sampling a continuous function f(t) having sampling period T is trans-

formed into F(z) in the domain of complex variable z. Application of the inverse z

transform to F(z) will result in the same discrete function f(k); however, there is no

basis for considering f(k) as a sampled version of any specific continuous function

of time. In other words, the function f(k) obtained from the inverse z transform is

defined only at distinct instants of time 0, T, 2T, . . . , and it would be entirely mean-

ingless to deduce what values it might take between the sampling instants of time.

After a continuous function of time is sampled, there is no unique transformation

that will allow for a return from the discrete-time domain to the original function.

15.6 SYNOPSIS

In this chapter, basic methods for modeling and analysis of discrete-time systems were

introduced. Although most engineering systems are continuous, more and more of

those systems are observed and/or controlled by digital computers, which results in

overall systems that are considered discrete. In such situations the continuous sys-

tem variables are known only at distinct, usually equal, increments of time. As in the

modeling of systems that include continuous elements only, input–output and state

models are used in modeling discrete-time systems. Difference equations describ-

ing discrete-time models can be solved with simple computer programs based on

recursive algorithms or with the z transform, which leads to closed-form solutions.

General forms of the discrete-time models were presented and compared with the

corresponding continuous system models. It was shown that the correspondence

between continuous and discrete-time models is rather elusive. A continuous system

can be approximated by many different discrete-time models resulting from differ-

ent discretization methods or from different time intervals selected for the discrete-

time approximation. In general, there are many similarities between continuous and

discrete-time systems that are very helpful for those who have had considerable expe-

rience in the area of continuous systems in their introductory studies of discrete-time

systems. However, as your knowledge of discrete-time systems progresses, you will

notice many distinct characteristics of these systems that open new and attractive

opportunities for analysis and, more importantly, for applications in process control,

robotics, and so forth.

408 Analysis of Discrete-Time Systems

PROBLEMS

15.1 A linear discrete-time model is described by the input–output equation

y(k) − 1.2y(k − 1) + 0.6y(k − 2) = u(k − 1) + u(k − 2).

Find the output sequence, y(k), k = 0, 1, . . . , 25, assuming that y(k) = 0 for k < 0, for

the following input signals:

(a) u(k) =
{

0 for k < 0

1 for k ≥ 0
,

(b) u(k) =

{

1 for k = 0

0 for k �= 0
.

15.2 Select the sampling frequency for a digital data-acquisition system measuring the

velocity v of mass m in the mechanical system considered in Example 4.1. The mechanical

system parameters are m = 5 kg and b = 2 N s/m.

15.3 Determine the sampling frequency for digital measurement of the position of mass

m in the mechanical system shown in Fig. 4.16(a) and described by the input–output

equation

9ẍ + 4ẋ + 4x = F(t),

where F(t) varies in a stepwise manner.

15.4 A sinusoidal signal y(t) = sin 200t is to be recorded with a computer data-acquisition

system. It is expected that the measuring signal may be contaminated by an electric

noise of frequency 60 Hz. Select the sampling frequency and determine the value of the

time constant of the guard filter to prevent aliasing. The transfer function of the filter is

T f (s) = 1/(� f s + 1).

15.5 Find z transforms of the following discrete functions of time defined for k = 0, 1,

2, . . . :

(a) a(1 − e−bkT),

(b) (1 − akT)e−bkT,

(c) e−bkT sin �kT,

(d) cos �(k − 2)T.

15.6 Obtain z transforms of the sequences x(k) subsequently described. Express the

solutions as ratios of polynomials in z:

(a) x(k) =

⎧

⎨

⎩

0 for k ≤ 1

0.5 for k = 2,

1 for k ≥ 3

(b) x(k) =

{

0 for k < 0

e0.5k
+ Us(k − 2) for k ≥ 0

.

15.7 Find a closed-form solution for a unit step response of the system having pulse

transfer function T(z) = (z + 1)/(z2
− 1.1z + 0.28). Verify the steady-state solution using

the final-value theorem.

Problems 15.8–15.11 409

15.8 A weighting sequence of a linear discrete-time system was measured at equally

spaced instants of time, and the results are given in the table. After time 10T, the measured

output signal was zero.

Time 0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T

w(kT) 1.0 0.5 0.25 0.125 0.063 0.031 0.016 0.008 0.004 0.002 0.001

Find the response of this system to a unit step input Us(k).

15.9 Obtain the weighting sequence for the pulse transfer function T(z) = (z2 + z)/[(z2 −
0.988z + 0.49)(z − 0.6)].

15.10 Obtain the weighting sequence for the system represented by the input–output

equation

y(k + 2) + 0.7y(k + 1) + 0.1y(k) = u(k + 1).

0 T 2T 3T 4T 5T 6T
t

u(k)

2.0

1.0

0.5

Figure P15.11. Input sequence used in
Problem 15.11(b).

15.11 Find the output sequences for the discrete-time system of the transfer function

T(z) = z/(z2 − 1.125z + 0.125) for the following input signals:

(a) Kronecker delta function defined as

u(k) =
{

1 for k = 0

0 for k �= 0
.

(b) Sequence u(k), shown in Fig. P15.11.

16

Digital Control Systems

LEARNING OBJECTIVES FOR THIS CHAPTER

16–1 To develop open-loop and closed-loop transfer functions in the z domain for

simple digital control systems.

16–2 To evaluate stability and transient performance of linear discrete-time systems.

16–3 To assess steady-state performance of discrete-time systems.

16–4 To implement a discrete-time equivalent of a PID controller.

16.1 INTRODUCTION

Unprecedented advances in electronics have revolutionized control technology in

recent years. Digital controllers, built around microcomputer chips as stand-alone

units or implemented with ubiquitous personal computers, have dominated modern

industrial process control applications. The computational power and operational

speed of digital controllers allow for performance of much more sophisticated algo-

rithms than were possible with analog controllers. Even for relatively simple control

tasks, digital controllers are superior to analog controllers by virtue of their improved

flexibility, greater reliability, and, more and more often, lower cost.

The main objective of this chapter is to introduce the very basic concepts of

analysis of digital control systems. Only linear, stationary models are considered. In

Section 16.2, a pulse transfer function block diagram of a single-loop digital con-

trol system is presented. Section 16.3 deals with transient characteristics determined

by the locations of roots of the system characteristic equation; methods for deter-

mining stability are also briefly discussed. In Section 16.4, steady-state performance

characteristics of digital control systems are reviewed. Section 16.5 provides intro-

ductory material on digital control algorithms. A digital version of the PID con-

troller is given special attention because of its popularity in industrial process control

applications.

16.2 SINGLE-LOOP CONTROL SYSTEMS

At the time of the first digital process control applications in the late 1950s, the

cost of computers used to perform control functions was relatively high. To make

410

16.2. Single-Loop Control Systems 411

these systems economical and to obtain reasonable payback time, at least 100 or

more individual control loops had to be included in a single installation. Hundreds

of measuring signals were transmitted from the process to the computer, often over

very long distances. The control signals were sent back from the central computer to

the process over the same long distances. As a result, an excessive network of wire

and tubing was necessary to transmit electrical and pneumatic signals back and forth

between the process and the computer. In addition to the obviously high cost of such

installations, they were also very vulnerable to damage and interference from all kinds

of industrial disturbances. Moreover, every failure of the central computer affected

the entire process being controlled, which caused serious reliability problems.

In the 1970s, when microprocessors became available, distributed digital control

systems were introduced. In these systems, controllers built around microprocessors

are responsible for only local portions of the process, and so each digital controller

is required to handle only one or a few control loops. Thus the controllers may be

located in close proximity to the process, reducing cable and tubing cost in com-

parison with the centralized systems. The local controllers can be connected with a

supervisory controller through a data bus, as illustrated in Fig. 16.1. During start-up

and shutdown of complex multiloop process control systems, it is often advantageous

to maintain autonomy of local control loops under the supervision of experienced

personnel in order to achieve the transition between dead-start and normal opera-

tion. A failure of any of the local controllers or even of the supervisory controller

has a limited impact on the performance of the rest of the system, which results

in a much greater reliability than was possible in centralized systems. Also, it is

usually easier and more economical to provide redundant digital controllers than

to provide redundant continuous controllers when the need for reliability is very

great. Moreover, the modular structure of distributed systems allows for gradual

(piece-by-piece, controller-by-controller) implementation of new systems and easier

expansion of existing systems. In summary, distributed control systems have proven

to be the most efficient and reliable structures for industrial process control today.

The material presented in this chapter is limited to single-loop systems such as those

implemented at the lowest level of distributed control systems.

Supervisory

computer

Digital

controller

Digital

controller

2

Digital

controller

N

Subprocess

1

Subprocess

2

Subprocess

N

Process

Figure 16.1. Distributed digital control system.

412 Digital Control Systems

A block diagram of a single-loop digital control system is shown in Fig. 16.2.

The controller pulse transfer function is TC(z). The other block, TP(z), represents a

controlled process together with a preceding ZOH and can be expressed as

TP(z) = Z{Th(s)TP(s)}, (16.1)

where Th(s) is the transfer function of the ZOH and TP(s) represents a continuous

model of the process. By use of Eq. (15.33), TP(z) can be expressed as

TP(z) = Z

{

1 − e−sT

s
TP(s)

}

, (16.2)

and, hence,

TP(z) = (1 − z−1)Z

{

TP(s)

s

}

. (16.3)

A closed-loop pulse transfer function for the digital control system shown in Fig. 16.2

is

TCL(z) =
TC(z)TP(z)

[1 + TC(z)TP(z)]
. (16.4)

In the next two sections, basic transient and steady-state characteristics of linear

single-loop digital control systems are examined.

16.3 TRANSIENT PERFORMANCE

Just as in the case of continuous systems, transient performance of discrete-time

systems is determined by location of the poles of the system transfer function. The

poles of the transfer function are the roots of the system characteristic equation,

which in the case of the system shown in Fig. 16.2 takes the form

1 + TC(z)TP(z) = 0. (16.5)

For linear systems represented by input–output equation (15.11), the transfer func-

tion is of the form

T(z) =
h0 + h1z−1 + · · · + hnz−n

1 + g1z−1 + · · · + gnz−n
, (16.6)

or, equally,

T(z) =
h0zn + h1zn−1 + · · · + hn

zn + g1zn−1 + · · · + gn

. (16.7)

The characteristic equation is thus an nth-order algebraic equation in z:

zn + g1zn−1 + · · · + gn = 0. (16.8)

X(z)
E(z) U(z)

Y(z)TC(z) TP(z)
+

−
Figure 16.2. Block diagram of a single-loop
digital control system.

16.3. Transient Performance 413

This equation can be written in factored form as

(z − p1)(z − p2) · · · (z − pn) = 0, (16.9)

where p1, p2, . . . , pn are the poles of the transfer function. To investigate the effect

of the locations of the poles in the domain of complex variable z on the system

transient performance, a first-order system will be considered. The system pulse

transfer function is

T(z) =
1

1 + g1z−1
(16.10)

or, equally,

T(z) =
1

1 + p1z−1
, (16.11)

where p1 is a single real pole. The corresponding input–output equation is

y(k) − p1 y(k − 1) = u(k). (16.12)

The homogeneous equation is

y(k) − p1 y(k − 1) = 0. (16.13)

For a nonzero initial condition, y(0) �= 0, the output sequence is

y(k) = y(0)pk
1 . (16.14)

Plots of the sequence y(k), for k = 0, 1, 2, . . . , given by Eq. (16.14), for different values

of p1 are shown in Table 16.1. Note that the free response of the system, represented

by the solution of the homogeneous input–output equation, converges to zero only

if the absolute value of p1 is less than unity, |p1| < 1.

Discrete-time systems of higher than first order may have real as well as complex

poles, which occur in pairs of complex-conjugate numbers just as they do in contin-

uous systems. Moreover, the relation between the s-plane locations of continuous

system poles and the z-plane locations of poles of a corresponding discrete-time

system with sampling interval T is given by

z = esT, (16.15)

or, equally,

s =
1

T
ln z. (16.16)

Equations (16.15) and (16.16) represent a mapping between the s plane and the z

plane that applies to all poles of the system transfer function, not just the complex

ones.1 The term “corresponding” used here means the relation between a continuous

system and a discrete-time system involving the original continuous system together

with a ZOH and an ideal sampler, as shown in Fig. 16.3.

1 G. F. Franklin, J. D. Powell, and M. Workman, Digital Control of Dynamic Systems, 3rd ed. (Addison

Wesley Longman, Menlo Park, CA), 1998.

414 Digital Control Systems

Table 16.1. Locations of the pole in the z plane and corresponding

free response sequences for a first-order system

16.3. Transient Performance 415

x(t)
y(t)Continuous

process
ZOH

Continuous

processz = esT y*(kT)
x*(kT)

T

Figure 16.3. Illustration of mapping between the s and z planes.

In Chap. 4, the transient performance specifications of continuous systems were

discussed in detail. The mapping given by Eq. (16.15) can be used to transform those

specifications from continuous time to the discrete-time domain. A complex pole in

the s plane can be expressed, from Eq. (4.81), as

s = −��n + j�d. (16.17)

By use of mapping defined by Eq. (16.15), the corresponding pole in the z plane is

z = e(−��n+ j�d)T = e−��nTe j�dT. (16.18)

The real decreasing exponential term on the right-hand side of Eq. (16.18) represents

the distance d between the pole and the origin of the z-plane coordinate system:

d = |z| = e−��nT, (16.19)

whereas the complex exponential factor represents the phase angle associated with

the pole:

� = � z = �dT. (16.20)

Replacing the sampling period T with the sampling frequency �s yields

� =
2��d

�s
. (16.21)

For a specified sampling frequency �s and a constant damped frequency �d, a constant

value of is obtained. The loci of the constant frequency ratio �d/�s are therefore

straight lines crossing the origin of the coordinate system at the angle given by the

right-hand side of Eq. (16.21) with respect to the positive real axis in the z plane.

One can find loci of another important parameter associated with complex poles,

the damping ratio � , by combining Eqs. (16.19) and (16.20), which yields

d = e−(��/
√

1−� 2). (16.22)

Equation (16.22) describes spiral curves in the z plane with a constant value of the

damping ratio along each curve. Figure 16.4 shows loci of constant frequency ratio

given by Eq. (16.21) and constant damping ratio, Eq. (16.22). The loci are symmetrical

with respect to the real axis; however, only the upper half of the z plane shown in

Fig. 16.4 is of practical significance because it represents the area where the sampling

frequency satisfies the Shannon theorem condition, Eq. (15.27).

The principal requirement regarding system transient performance is its stability.

It was observed earlier that the free response of a system with real poles converges

to zero (which indicates asymptotic stability according to the definition stated in

Chap. 13) only if the absolute value of each real pole is less than unity. To determine

the stability condition for discrete-time systems having both real and complex poles,

416 Digital Control Systems

−1.0 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1.00

0.9

0.7

0.5

0.3

0.1

ωd/ωs = 0.500

0.458

0.417

0.375

0.333

0.292
0.250 0.208

0.167

0.125

0.083

ωd/ωs = 0.042

Re (z)

Unit circleζ = 0

Im (z)

Figure 16.4. Loci of constant �d/�s and constant damping ratio.

the mapping defined by Eq. (16.15) can be used. When this mapping is used, the

left-hand side of the s plane is transformed into the inside of a unit circle in the z

plane. It can thus be concluded that a linear discrete-time system is asymptotically

stable if all poles of the system transfer function lie inside the unit circle in the plane

of complex variable z, that is, if

|pi | < 1 for i = 1, 2, . . . , n.

The area inside the unit circle in the plane of complex variable z plays, therefore,

the same role in analysis of stability of discrete-time systems as the left-hand side of

the s plane does in analysis of stability of continuous systems.

A direct method for analysis of stability of a discrete-time system involves calcu-

lation of all roots of the system characteristic equation to determine their locations

with respect to the unit circle in the z plane. This method, which is efficient only in

analysis of low-order systems, is illustrated in Example 16.1.

EXAMPLE 16.1

Determine the stability condition for a digital control system with a proportional con-

troller, shown in Fig. 16.5. The s-domain transfer function of the continuous process is

TP(s) =
kP

�s + 1
.

x(k) ZOH Process y(k)
u(k) u(t)

T

kC

+

−

Figure 16.5. Digital control system considered in Example 16.1.

16.3. Transient Performance 417

SOLUTION

First, the equivalent process transfer function representing the dynamics of the continuous

process together with the zero-order hold can be found with Eq. (16.3), together with the

partial fraction expansion for TP(s)/s, kP(1
s

− 1
s+1/�

) and Table A2.1 in Appendix 2:

TP(z) = (1 − z−1)Z

{

TP(s)

s

}

=
kPz−1(1 − e−T/�)

1 − e−T/� z−1
,

where T is the sampling time.

The transfer function for the proportional controller is

TC(z) = kC.

The closed-loop system transfer function is

TCL(z) =
kCkPz−1(1 − e−T/�)

1 − e−T/� z−1 + kC KPz−1(1 − e−T/�)
,

and the system characteristic equation is

1 − e−T/� z−1 + kCkPz−1(1 − e−T/�) = 0.

The single real pole of the closed-loop system is

p = e−T/� − kCkP(1 − e−T/�).

To ensure stability, the pole must lie between −1 and +1 on the real axis in the z plane.

The stability condition can thus be written as

−1 < [e−T/� − kCkP(1 − e−T/�)] < 1,

which yields the admissible range of values for positive controller gain:

0 < kC <
1 + e−T/�

kP(1 − e−T/�)
.

Several observations can be made in regard to Example 16.1. First, it can be seen

that a simple discrete-time system, including a first-order process and a proportional

controller, can be unstable if the open-loop gain is too high, whereas a first-order

continuous control system is always stable. This difference is caused by the presence

of the zero-order hold in the discrete-time system. Second, from the stability con-

dition found for the system, it can be seen that the maximum admissible value of

kC increases when the sampling time T decreases. In fact, as T approaches zero, the

system becomes unconditionally stable, that is, stable for all values of gain kC from

zero to infinity. Third, note that the relation between the continuous process pole

s = −1/� and the pole of the corresponding discrete-time pole z = e−T/� is indeed

as given by Eq. (16.15).

Of course, the direct method for analysis of stability is not the most efficient.

One of the more efficient methods is based on a bilinear transformation defined by

w =
z + 1

z − 1
(16.23)

418 Digital Control Systems

or, equally,

z =
w + 1

w − 1
. (16.24)

The mapping defined by these equations transforms the unit circle in the z plane

into the imaginary axis of the w plane and the inside of the unit circle in the z plane

into the left-hand side of the w plane. Substituting the right-hand side of Eq. (16.24)

for z in the system characteristic equation [Eq. (16.8)] yields an nth-order equation

in variable w. If all roots of this equation lie in the left-hand side of the w plane, the

discrete-time system is stable. To determine if the roots of the transformed equation

satisfy this condition, the same methods can be used as those developed for analysis

of stability of linear continuous systems, such as the Hurwitz and the Routh criteria

presented in Chap. 13.

16.4 STEADY-STATE PERFORMANCE

In Section 14.2, the steady-state performance of continuous control systems was

evaluated. The two primary criteria used in this evaluation, the steady-state control

error and the steady-state sensitivity to disturbances, can also be applied to discrete-

time systems.

The steady-state value of the error signal e(k) in a single-loop control system

(see Fig. 16.2) is defined as

ess = lim
k→∞

e(k). (16.25)

When the final-value theorem is applied, ess can also be expressed as

ess = lim
z→1

(1 − z−1)E(z), (16.26)

where E(z) is a z transform of e(k). An algebraic equation for the summing point in

Fig. 16.2 is

E(z) = X(z) − Y(z). (16.27)

The output Y(z) is

Y(z) = E(z)TC(z)TP(z). (16.28)

Substituting Eq. (16.28) into Eq. (16.27) yields

E(z) = X(z) − E(z)TC(z)TP(z). (16.29)

Hence the error pulse transfer function TE(z) is defined as

TE(z) =
E(z)

X(z)
=

1

1 + TC(z)TP(z)
. (16.30)

The steady-state error can now be expressed in terms of the error transfer function

TE(z) and the z transform of the input signal X(z):

ess = lim
z→1

(1 − z−1)X(z)TE(z). (16.31)

16.4. Steady-State Performance 419

As indicated by Eq. (16.31), the steady-state performance of discrete-time control

systems depends not only on the system characteristics, represented by the error

transfer function TE(z), but also on the type of input signal, X(z). This again is true

for continuous control systems also. A steady-state response to unit step and unit

ramp inputs will now be derived.

16.4.1 Unit Step Input

The z transform of the unit step function Us(kT) is

X(z) = Z{Us(kT)} =
1

1 − z−1
. (16.32)

Substituting Eq. (16.32) into Eq. (16.31) gives the steady-state error for a unit step

input:

ess = lim
z→1

TE(z) = lim
z→1

1

1 + TC(z)TP(z)
. (16.33)

A static-position error coefficient is defined as a limit of the open-loop pulse transfer

function for z approaching unity:

KP = lim
z→1

TC(z)TP(z). (16.34)

The steady-state error can now be expressed as

ess =
1

1 + KP
. (16.35)

This result shows that the steady-state error in response to a unit step input will be

zero only if the static-position error coefficient is infinity. From Eq. (16.34) it can be

seen that KP will approach infinity if the open-loop transfer function, TC(z)TP(z),

has at least one pole at z = 1. In general, TC(z)TP(z) can be presented as

TC(z)TP(z) =
k(z − z1)(z − z2) . . . (z − zm)

(z − 1)r (z − p1)(z − p2) . . . (z − pn)
, (16.36)

where z1, z2, . . . , zm are the open-loop zeros other than unity and p1, p2, . . . , pn are

the open-loop poles, none of which is equal to 1. There are also r open-loop poles

at z = 1. The multiplicity of the open-loop poles at z = 1 determines the type of the

system. As shown earlier, the steady-state error in response to a unit step input is

zero for systems of type 1 or higher.

16.4.2 Unit Ramp Input

The z transform of the unit ramp signal was found in Example 15.3 to be

X(z) = Z{x(kT)} =
Tz−1

(1 − z−1)2
, (16.37)

420 Digital Control Systems

where x(kT) is

x(kT) =
{

0 for k < 0

kT for k ≥ 0
.

From Eq. (16.31), the steady-state error is

ess = lim
z→1

(1 − z−1)

Tz−1

(1 − z−1)2

1 + TC(z)TP(z)
(16.38)

= lim
z→1

T

(1 − z−1)TC(z)TP(z)
.

A static-velocity error coefficient Kv is defined as

Kv = lim
z→1

(1 − z−1)TC(z)TP(z)/T. (16.39)

Comparing Eqs. (16.38) and (16.39) yields

ess =
1

Kv
. (16.40)

From Equation (16.40), the steady-state error in response to a ramp signal can be

seen to equal zero only if the system static-velocity error coefficient is infinity, which

occurs when the open-loop transfer function has at least a double pole at z = 1. In

other words, using the terminology introduced earlier in this section, the steady-state

error in response to a ramp input is zero if the system is of type 2 or higher.

The results derived here for unit step and unit ramp inputs can be extended to

parabolic and higher-order input signals.

Another important aspect of performance of control systems is their ability to

eliminate steady-state effects of disturbances on the output variable. The parameter

introduced in Chap. 14 for evaluation of continuous systems, a steady-state distur-

bance sensitivity, can also be applied to discrete-time systems. According to the

definition formulated in Chap. 14, the steady-state disturbance sensitivity SD is

SD =
�yss

�vss
. (16.41)

Figure 16.6 shows a digital control system subjected to a disturbance signal having

z transform V(z). The output Y(z) in this system consists of two components – one

caused by the input signal X(z), and the other produced by the disturbance V(z);

that is,

Y(z) = TCL(z)X(z) + TD(z)V(z), (16.42)

where TCL(z) is the system closed-loop pulse transfer function and TD(z) is the

disturbance pulse transfer function, defined as

TD(z) =
Y(z)

V(z)

∣

∣

∣

∣

X(z)=0

. (16.43)

16.5. Digital Controllers 421

X(z)

V(z)

E(z)
Y(z)

U(z)+
+

+−

TC(z) TP(z)

TV(z)

Figure 16.6. Block diagram of a digital control system subjected to disturbance V(z).

By use of block-diagram algebra, the disturbance transfer function is found to

be

TD(z) =
TV(z)

1 + TP(z)TC(z)
. (16.44)

Assuming that �vss is unity, which does not restrict the generality of these consider-

ations, the disturbance sensitivity can be expressed as

SD = �yss = lim
z→1

(1 − z−1)V(z)TD(z) = lim
z→1

TD(z). (16.45)

In general, to reduce the system disturbance sensitivity, the open-loop gain has to be

high, but the extent to which the open-loop gain can be increased is usually limited

by the system transient performance requirements.

16.5 DIGITAL CONTROLLERS

One of the greatest advantages of digital controllers is their flexibility. A control

algorithm performed by a digital controller is introduced in the form of a computer

code, in some cases just a few lines of basic or c programming. All it takes to change

the control algorithm is to rewrite those few lines of programming. In addition, there

are very few limitations, especially when compared with those of analog controllers,

on what kinds of control actions can be encoded. Yet, in spite of the great flexibility

and ease of implementing various control algorithms, over 90% of industrial digital

controllers perform a classical PID algorithm. The main reason for the popularity of

PID controllers is an extensive theoretical and practical knowledge of many aspects of

their performance carried over from the years of analog controllers. The presentation

of digital controllers in this book is limited to the PID control algorithm.

The continuous PID control law was given by Eq. (14.43):

u(t) = kp

[

e(t) +
1

Ti

∫ t

0

e(tD)dtD + Td
de(t)

dt

]

.

In a discrete-time system, the integral and derivative terms are approximated by use

of discretized models. Various discretization methods can be used to generate differ-

ent versions of the digital PID algorithm. The simplest method for approximating an

integral is a rectangular (staircase) backward-difference approximation described as

∫ t

0

e(tD)dtD ≈

k−1
∑

i=0

e(i)T, (16.46)

422 Digital Control Systems

where T is the sampling time. The derivative of the control error is approximated by

a backward-difference quotient:

de(t)

dt
≈

e(k) − e(k − 1)

T
. (16.47)

Substituting approximating expressions of Eqs. (16.46) and (16.47) into Eq. (14.43)

and replacing u(t) and e(t) with u(k) and e(k), respectively, yields

u(k) = KPe(k) + Ki

k−1
∑

i=0

e(i) + Kd[e(k) − e(k − 1)], (16.48)

where Kp is the digital proportional gain and Ki and Kd are the digital integral and

derivative gains, respectively, given by

Kp = kp, (16.49)

Ki = kpT/Ti, (16.50)

Kd = kpTd/T. (16.51)

Equations (16.49)–(16.51) are provided only to show the relationship of a discrete

model to a continuous model of a PID controller. Thus they do not imply the existence

of more than nominal correspondence between discrete-model coefficients and the

continuous-model coefficients derived in Section 14.5 from Ziegler and Nichols.

Equation (16.48) is referred to as a position PID algorithm. Another very widely

used form of digital PID is a velocity algorithm. To derive the velocity algorithm, first

consider the control signal defined by Eq. (16.48) at the (k − 1)T instant of time:

u(k − 1) = Kpe(k − 1) + Ki

k−2
∑

i=0

e(i) + Kd[e(k − 1) − e(k − 2)]. (16.52)

Subtracting Equation (16.52) from Equation (16.48) yields

�u(k) = u(k) − u(k − 1) = Kp[e(k) − e(k − 1)]

+ Kie(k − 1) + Kd[e(k) − 2e(k − 1) + e(k − 2)], (16.53a)

or, in more compact form,

�u(k) = K0e(k) + K1e(k − 1) + K2e(k − 2), (16.53b)

where

K0 = Kp + Kd,

K1 = Ki − 2Kd − Kp,

K2 = Kd.

(16.54)

The velocity algorithm is usually preferred over the position algorithm because it is

computationally simpler, it is safer [in case of controller failure, the control signal

remains unchanged, �u(k) = 0], and it better handles “wind-up.” A control error

wind-up occurs within the controller after a control actuator – a control valve, for

instance – hits a stop. When this happens, the error signal to the controller persists and

the integrator output continues to increase, producing a “wind-up” phenomenon.

16.6. Synopsis 423

The controller gains Kp, Ki, and Kd are selected to meet specified process per-

formance requirements and must be adjusted according to the process transient and

steady-state characteristics. A set of tuning rules, derived from the Ziegler–Nichols

rules for analog controllers presented in Chap. 14, can be used to adjust the controller

gains on the basis of the process step response. The Ziegler–Nichols rules for a digital

PID controller are

Ki =
0.6T

R(L+ 0.5T)2
,

Kp =
1.2

R(L+ T)
,

Kd =
0.5

RT
.

(16.55)

The values of R and L are determined from the step response curve, as shown in

Fig. 14.12. It should be stressed that, just as in the case of analog controllers, the

Ziegler–Nichols rules do not guarantee optimal settings for the digital controller

gains. In most cases, however, the values obtained with Eqs. (16.55) provide a good

starting point for further fine-tuning of the controller gains based on the system

on-line performance.

As shown by Eqs. (16.55), the values of the control settings of a digital controller

are also dependent on the sampling time T. Selecting a proper sampling time for

a digital controller is a complex matter involving many factors. Some of the more

important system characteristics affected by the sampling time are stability, band-

width, sensitivity to disturbances, and sensitivity to parameter variations. All of these

characteristics improve when the sampling interval is decreased. However, the cost

of the digital system increases when a small sampling time or, equally, a high sampling

frequency is required, simply because faster computers and faster process interface

devices are more expensive than slower ones. Moreover, the initial magnitude of

a control signal produced by a digital PID controller in response to a step change

of an input signal is greater if the sampling time is smaller for most control algo-

rithms. Thus, selecting the sampling time for a digital control system is a compromise

between performance and cost (including the control effort), a familiar dilemma for

a system designer.2

16.6 SYNOPSIS

Digital control is a broad and still rapidly growing field. In this chapter, an attempt was

made to present in simple terms some of the basic problems associated with analysis

and design of digital control systems. The discussion was limited to single-loop sys-

tems, the most common structure in industrial digital control, implemented either as

simple stand-alone systems or as parts of more complex distributed systems. In spite

2 For more information on selection of sampling time for digital control systems, see Franklin et al.,

op. cit., pp. 449–78.

424 Digital Control Systems

of availability of many new and improved control algorithms developed specifically

for discrete-time systems, industrial digital controllers are usually programmed to

perform conventional PID algorithms in discrete-time form. Two versions of the dig-

ital PID algorithms were introduced, and tuning rules derived from Ziegler–Nichols

rules for analog PID controllers were discussed.

The design of digital control systems, like the design of continuous control sys-

tems, is an art of compromise between transient and steady-state performance. A

method of bilinear transformation for determining stability of discrete-time systems

was described. The relation between location of poles of the closed-loop transfer

function and the system transient performance was examined. Two basic criteria of

steady-state performance – steady-state control error and sensitivity to disturbances –

were shown to depend on the system open-loop gain and the type of input signal in

a manner similar to that observed in continuous feedback systems.

Although digital control offers many advantages to both designers and users of

closed-loop control systems, it should be noted that the best performance achievable

with a digital PID controller is dependent on choice of a sufficiently small value of the

sampling time interval T. Unless this value can become infinitesimal, the closed-loop

performance of a given system with digital PID control will not be as good as the

closed-loop performance of the same system attainable with continuous (analog) PID

control, because of the pure delay time T inherent in the sample-and-hold process

of the digital control system.

Furthermore, the presence of the derivative term in the discrete-model PID

controller generates a derivative component of the controller output signal that

varies inversely with T, often resulting in controller output signals that are too large

for the process to use (signal saturation at the process input), with the result that

the beneficial effects of the derivative action are lost. Hence this tends to limit the

smallness of T. The same saturation effect also occurs with continuous PID control,

unless a time lag is also present in the controller, but the continuous control system

does not suffer from the presence of the finite delay time T.

For the engineer who has accumulated a body of experience working with con-

tinuous control systems, the design of a conventional digital controller is readily

accomplished by using characteristics (PID, compensation, and so forth) needed for

continuous control in the s domain and then finding the corresponding characteris-

tics of a digital control system. This can be accomplished through the use of one of

a number of possible transform methods, as discussed in some detail by Ogata,3 for

instance.

PROBLEMS

16.1 The shaded area in Fig. P16.1 represents a region of desirable locations of poles for

a continuous dynamic system. The damping ratio associated with the complex-conjugate

poles located in this region is greater than 0.7, and the damped natural frequency is

smaller than 3.93 rad/s. Find a corresponding region in the z plane, assuming that the

sampling period is 0.2 s.

3 K. Ogata, Discrete-Time Control Systems (Prentice-Hall, New York, 1987), pp. 306–478.

Problems 16.1–16.4 425

ωd = 3.93 rad/s

Im [s]

45°

Re [s]

Figure P16.1. Region of desirable locations
of poles for a continuous system.

16.2 In certain applications of continuous control systems, it is desirable that the closed-

loop poles of the system transfer function be located far enough to the left of the imaginary

axis in the s plane. Mathematically, this requirement can be written as

Re[pi] ≤ amin, i = 1, 2, . . . , n,

where amin is a negative number and pi are closed-loop poles. This inequality is satisfied

in the shaded area shown in Fig. P16.2. Find a corresponding region in the z plane.

Figure P16.2. The region Re[pi] ≤ amin in
the s plane.

16.3 Obtain the z transform of the digital PID control algorithm given by Eqs. (16.53).

Find a pulse transfer function of the PID controller and arrange it into a ratio of polyno-

mials in z.

16.4 A control algorithm used in a digital control system, shown in Fig. P16.4, is given

by the difference equation

u(k) = u(k − 1) + Kpe(k) − 0.9512Kpe(k − 1).

The sampling time is 0.1 s, and the continuous process transfer function is

Tp(s) =
0.25

s + 1
.

426 Digital Control Systems

(a) Determine the maximum value of the controller gain Kp for which the closed-loop

system, consisting of the controller, the ZOH, and the continuous process Tp (s),

remains stable.

x(k) ZOH Process y(k)
u(k)

T

Controller
+

−

Figure P16.4. Digital control system considered in Problem 16.4.

(b) Derive an expression for the steady-state error of the system in response to a unit

ramp input kT, k = 0, 1, Find the value of the steady-state error for the value

of the controller gain found in part (a).

16.5 A pulse transfer function of a continuous process with ZOH was found to be

Tp(z) = (z − 1)Z

{

Tp(s)

s

}

=
0.025z2 + 0.06z + 0.008

z3 − 1.6z2 + 0.73z − 0.1
.

Determine the stability condition for a proportional controller of gain Kp in a digital

control system with the process and ZOH represented by Tp(z).

16.6 A digital PD controller is to be designed for control of a continuous process having

transfer function Tp(s) = 1/s(s + 2). The design specifications for the closed-loop system

include a damping ratio of 0.7 and a period of step response oscillation equal to 5 s.

(a) Find the required control parameters kp and Td for a continuous PD controller that

meets the design specifications.

(b) Find the proportional and derivative gains of a corresponding digital PD controller,

assuming a sampling time of T = 0.2 s, and write the discrete control algorithm in

velocity form.

(c) Obtain the pulse transfer function of the closed-loop system, including the digital

PD controller and the continuous process preceded by a ZOH.

(d) Find a difference equation relating output and input variables of the closed-loop

system.

(e) Calculate the first 15 values of the closed-loop system unit step response.

APPENDIX 1

Fourier Series and the Fourier Transform

When the input to a dynamic system is periodic – i.e., a continuously repeating

function of time, having period T such as the function shown in Fig. A1.1 – it is often

useful to describe this function in terms of an infinite series of pure sinusoids known

as a Fourier series.

One form of such an infinite series is

x (t) =
a0

2
+

∞
∑

k=1

ak cos k�1t+
∞

∑

k=1

bk sin k�1t, (A1.1)

where a0/2 = (1/T)
∫ t0+T

t0
x (t) dt is the average, or constant, value of the function,

�1 = 2�/T is the radian frequency of the lowest-frequency component, and the

amplitudes of the series of component sinusoids at succeeding frequencies k�1 are

given by

ak =
2

T

∫ t0+T

t0

x (t) cos k�1tdt, (A1.2)

bk =
2

T

∫ t0+T

t0

x (t) sin k�1tdt . (A1.3)

Alternatively, this function may be expressed as a series of only sine waves or only

cosine waves by use of

x (t) = X0 +

∞
∑

k=1

Xk sin (k�1t + �ks) (A1.4)

or

x (t) = X0 +

∞
∑

k=1

Xk cos (k�1t + �kc), (A1.5)

where

X0 =
a0

2
=

1

T

∫ t0+T

t0

x (t) dt,

Xk =

√

a2
k + b2

k,

�ks = tan−1 bk

ak

,

�kc = − tan−1 ak

bk

.

427

428 Appendix 1: Fourier Series and the Fourier Transform

x(t)

t

A

t0 (t0 + T)

.

T
2

−
T
2

0 T 3T
2

Figure A1.1. A typical periodic function.

The steady response of a dynamic system (i.e., the response remaining after

all transients have decayed to zero) to an infinite series of sine waves may also be

expressed as an infinite series:

y (t) = Yo +
∞

∑

k=1

Yk sin (k�1t + �ko) (A1.6)

where Yo is the constant component of output and the coefficients Yk are the ampli-

tudes of the successive sine waves having frequencies k�1 and phase angles �k̇o
. The

values of Yo, Yk, and �ko
at each frequency are obtained by the methods developed

in Chap. 12.

Alternatively, the periodic function x(t) may be expressed in terms of an infinite

series of exponentials having the form e jk�1t through the use of Euler’s equations:

sin �t =
1

2 j

(

e j�t − e− j�t
)

, (A1.7)

cos �t =
1

2

(

e j�t + e− j�t
)

. (A1.8)

Substituting these expressions into Eq. (A1.1) yields

x (t) =
a0

2
+

∞
∑

k=1

1

2

[

(ak − jbk) e jk�1t + (ak + jbk) e− jk�1t
]

or

x (t) = X0 +

∞
∑

k=1

(

Xke jk�1t + Xke− jk�1t
)

, (A1.9)

where

X0 =
a0

2
=

1

T

∫ t0+T

t0

x (t) dt, (A1.10)

Xk =
ak − jbk

2
, (A1.11)

Xk =
ak + jbk

2
. (A1.12)

Noting that

∞
∑

k=1

Xke− jk�1t =

−∞
∑

k=−1

Xke jk�1t ,

Appendix 1: Fourier Series and the Fourier Transform 429

one may simplify the expression for x(t) and then combine it with the expression for

Xo to form the single summation

x (t) =
∞

∑

n=−∞

Xne jn�1t , (A1.13)

where

Xn =
an − jbn

n
|n|

2
=

1

T

∫ t0+T

t0

x (t) e− jn�1t dt, (A1.14)

and n represents the complete set of integers from negative infinity to positive infinity,

including zero.

The complex coefficients Xn (i.e., the conjugate pairs Xk and Xk) have magnitudes

and phase angles given by

|Xn| =
1

2

√

a2
n + b2

n, (A1.15)

� Xn = − tan−1 n

|n|

bn

a
. (A1.16)

Because the exponential components of the series in Eq. (Al.13) act in conjugate

pairs for each value of |n|, the magnitude of Xn is one-half the amplitude of the

corresponding wave in the sine wave series in Eq. (Al.4), and the phase angle of Xn is

the negative of the phase angle �ks of the corresponding wave in the sine-wave series.

As a prelude to the discussion of Laplace transforms in Appendix 2, it can be

seen that if the period T is allowed to increase and approach infinity, the frequency

�0 approaches zero and the frequency interval between successive values of n�0

becomes infinitesimal. In the limit, Eq. (Al.14) becomes the expression for the Fourier

transform:

X (j�) = F
{

x (t)
}

=

∫ ∞

−∞

x (t) e− j�t dt . (A1.17)

The Fourier transform is closely related1 to the Laplace transform, which uses the

exponential e−st instead of the exponential e− j�t in the transformation integral.

EXAMPLE A1.1

Find the expression for the complex coefficients Xn of the infinite series of Fourier expo-

nentials to represent the periodic function shown in Fig. A1.1 and develop the terms of

the exponential series into a series of sines and/or cosines. Sketch roughly to scale each

of the first two sinusoidal components (i.e., for n = 1, 3) on a graph, together with the

square-wave periodic function.

1 See D. Rowell and D. N. Wormley, System Dynamics: An Introduction (Prentice-Hall, Upper Saddle

River, NJ, 1997), pp. 539–42.

430 Appendix 1: Fourier Series and the Fourier Transform

x(t)

t

A

t0

A/2

t0 + T

.

0 T

n = 1

n = 3

3T
2

Figure A1.2. Sketch showing sine waves for n = 1, 3 superposed on square-wave function.

SOLUTION

From Eq. (A1.14), Xn is found to be

Xn =
1

T

∫ +T/2

−T/2

x (t) e− jn�1t dt. (A1.18)

Integrating from – T/2 to 0 and from 0 to T/2 and substituting the corresponding

values of x(t) yield

Xn =
1

T

(∫ 0

−T/2

0 e− jn�1t dt +
∫ +T/2

0

Ae− jn�1t dt

)

=
1

T

(

0 −
A

jn�1
e− jn�1t

∣

∣

∣

∣

+T/2

0

)

=
j A

n�1T

(

e− jn�1T/2 − 1
)

. (A1.19)

Substituting the trigonometric form for the complex exponential in Eq. (A1.19) and

using �1 = 2�/T, we obtain

Xn =
j A

2n�
(cos n� − j sin n� − 1) =

j A

2n�
(cos n� − 1) . (A1.20)

Thus, for even values of n, Xneven
= 0 , and for odd values of n,

Xnodd
=

− j A

n�
. (A1.21)

For n = 0,

X0 =
A

2
. (A1.22)

Substituting Eqs. (A1.21) and (A1.22) into Equation (A1.13) yields

x (t) =
A

2
+

2A

�

1

2 j

(

e j�1t − e j�1t
)

+
2A

3�

1

2 j

(

e j3�1t − e j3�1t
)

+ · · · +

+
2A

n�

1

2 j

(

e jn�1t − e jn�1t
)

. (A1.23)

Appendix 1: Fourier Series and the Fourier Transform 431

Then, using Euler’s identity for sin �t yields

x (t) =
A

2
+

2A

�
sin (�1t) +

2A

3�
sin (3�1t)

+ · · · +
2A

n�
sin (n�1t) . (A1.24)

The sine waves for n = 1 and n = 3 are shown superposed on the square-wave function

in Fig. A1.2.

APPENDIX 2

Laplace Transforms

A2.1 DEFINITION OF LAPLACE TRANSFORM

A Laplace transform is a mapping between the time domain and the domain of

complex variable s defined by

F(s) = �{ f (t)} =
∫ ∞

0

f (t)e−st dt, (A2.1)

where s is a complex variable, s = � + j�, and f (t) is a sectionally continuous func-

tion of time. Function f (t) is also assumed to be equal to zero for t < 0. With this

assumption, the transform defined by Eq. (A2.1) is called a one-sided Laplace trans-

form.

The condition for the existence of a Laplace transform of f (t) is that the integral

in Eq. (A2.1) exists, which in turn requires that there exist real numbers, A and b,

such that | f (t)| < Aebt . Most functions of time encountered in engineering systems

are Laplace transformable.

Laplace transforms are commonly used in solving linear differential equations.

By application of the Laplace transform, the differential equations involving vari-

ables of time t are transformed into algebraic equations in the domain of complex

variable s. The solutions of the algebraic equations, which are usually much easier to

obtain than the solutions of the original differential equations, are then transformed

back to the time domain by use of the inverse Laplace transform.

A2.2 INVERSE LAPLACE TRANSFORM

The inverse Laplace transform is defined by the Riemann integral:

f (t) = �
−1

{F(s)} =
1

2� j

∫ c+ j∞

c− j∞

F(s)est ds. (A2.2)

The Riemann integral is rarely used in practice. The most common practical method

used in inverse Laplace transformation is the method of partial fraction expansion,

which will be described later.

A short list of Laplace transforms and z transforms, defined in Chap. 15, of the

most common functions of time is given in Table A2.1.

432

Appendix 2: Laplace Transforms 433

A2.3 BASIC PROPERTIES OF THE LAPLACE TRANSFORM

What follow are useful basic properties of the Laplace transform:

(1) Linearity:

�{a1 f1(t) + a2 f2(t)} = a1F1(s) + a2F2(s). (A2.3)

(2) Integration:

�

{∫ −t

0

f (�)d�

}

=
F(s)

s
. (A2.4)

(3) Differentiation:

�

{

dn f (t)

dtn

}

= snF(s) −
n−1
∑

k=0

sn−k−1

[

dk f (t)

dtk

]

∣

∣

∣

∣

∣

t=0−

. (A2.5)

(4) Shifting argument in the time domain (multiplication by an exponential in the s

domain):

�{ f (t − a)} = e−asF(s). (A2.6)

(5) Shifting argument in the s domain (multiplication by an exponential in the time

domain):

�{ f (t)e−at } = F(s + a). (A2.7)

In addition to these properties, two theorems are very useful in evaluating initial and

steady-state values of function f (t). The initial-value theorem is

f (0+) = lim
s→∞

sF(s). (A2.8)

If the limit of function f (t) as time approaches infinity exists, then the steady-state

value of function f (t) is given by the final-value theorem,

lim
t→∞

f (t) = lim
s→∞

sF(s). (A2.9)

A2.4 PARTIAL FRACTION EXPANSION METHOD

The method of partial fraction expansion is most commonly used in obtaining inverse

Laplace transforms of functions that have a form of ratios of polynomials in s, such

as

F(s) =
B(s)

A(s)
=

b0 + b1s + · · · + bmsm

a0 + a1s + · · · + ansn
, (A2.10)

where m ≤ n. Transfer functions of linear systems often take such form. If the roots

of the characteristic equation, A(s) = 0, are s1, s2, . . .,sq, the expansion of F(s) takes

the form

F(s) =
C11

s − s1
+

C12

(s − s1)2
+ · · · +

C1p1

(s − s1)p1
+ · · · +

Cqpq

(s − sq)pq
, (A2.11)

434 Appendix 2: Laplace Transforms

where q is the number of roots, some of which may be multiple roots, and pi is

a multiplicity of the ith root. Note that if all roots are distinct, q = n. Equation

(A2.11) can be rewritten in the more compact form

F(s) =
q

∑

i=1

pi
∑

j=1

Ci j

(s − si) j
. (A2.12)

The constants Cij are given by

Ci1 = lim
s→si

[F(s)(s − si)
pi],

Ci2 = lim
s→si

{

d[F(s)(s − si)
pi]

ds

}

,

Ci j =
1

(pi − j)!
lim
s→si

dpi − j [F(s)(s − si)
pi − j]

ds pi − j
. (A2.13)

In Examples A2.1 and A2.2, the partial fraction expansion method is used to

find inverse Laplace transforms. In Example A2.3, Laplace transformation is used

to obtain a transfer function and a step response for a mass–spring–dashpot

system.

EXAMPLE A2.1

Find an inverse Laplace transform of function F(s):

F(s) =
2s + 4

s3 + 7s2 + 15s + 9
.

SOLUTION

The first step is to find the poles of F(s). There is a single pole at s = –1 and a pole of

multiplicity 2 at s = –3. F(s) can thus be rewritten as

F(s) =
2s + 4

(s + 1)(s + 3)2
.

Hence the expanded form of F(s) is

F(s) =
C11

s + 1
+

C21

s + 3
+

C22

(s + 3)2
.

By use of Eqs. (A2.13), the constants C11, C21, and C22 are found to be

C11 = 0.5, C21 = −0.5, C22 = 1.

The partial fraction expansion of F(s) becomes

F(s) =
0.5

s + 1
−

0.5

s + 3
+

1

(s + 3)2
.

The inverse Laplace transforms of the three simple terms on the right-hand side of

the preceding equation can be found in Table A2.1, yielding the solution

f (t) = 0.5e−t − 0.5e−3t + te−3t .

Appendix 2: Laplace Transforms 435

Table A2.1. Laplace and z transforms of most common functions of time

Continuous Discrete Laplace transform z Transform

Ui(t) Ui(kT) 1 1

Us(t) Us(kT) 1/s z/(z – 1)

t kT 1/s2 Tz/(z – 1)2

t2 (kT)2 2/s3 T2z(z + 1)/(z − 1)3

e−at e−akT 1/(s + a) z/ (z − e−at)

te−at kTe−akT 1/(s + a)2 Te−aTz/(z − e−at)2

sin �t sin �kT �/(s2 + �2) z sin �T/(z2 − 2z cos �T + 1)

cos �t cos �kT s/(s2 + �2) z(z − cos �T)/(z2 − 2z cos �T + 1)

EXAMPLE A2.2

Find the inverse Laplace transform of

F(s) =
4

s(s2 + 2.4s + 4)
.

SOLUTION

In addition to the pole s = 0, F(s) has two complex-conjugate poles, s2 = −1.2 – j1.6 and

s3 = – 1.2 + j1.6. The factored form of F(s) is

F(s) =
4

s(s + 1.2 + j1.6)(s + 1.2 − j1.6)
.

The partial fraction expansion in this case is

F(s) =
C11

s
+

C21

(s + 1.2 + j1.6)
+

C31

(s + 1.2 − j1.6)
.

The constants C11, C21, and C31 are obtained by use of Eqs. (A2.13):

C11 = 1, C21 = 0.625e− j0.6435, C31 = 0.625e j0.6435.

Hence

F(s) =
1

s
+ 0.625

(

e j0.6435

s + 1.2 + j1.6
+

e− j0.6435

s + 1.2 − j1.6

)

.

By use of Table A2.1 to find the inverse Laplace transforms of the terms on the right-hand

side of the preceding equation, the function of time is obtained as

f (t) = 1 + 0.625[e j0.6435e(−1.2− j1.6)t + e− j0.6435e(−1.2+ j1.6)t].

To simplify the form of f (t), first group the exponents of the exponential terms:

f (t) = 1 + 0.625(e j0.6435−1.2t− j1.6t + e− j0.6435−1.2t+1.6t).

Moving the common factor outside the parentheses yields

f (t) = 1 + 0.625e−1.2t [e− j(−0.6435 + 1.6t) + e− j(0.6435 − 1.6t)].

436 Appendix 2: Laplace Transforms

Now, substitute equivalent trigonometric expressions for the two exponential terms

to obtain

f (t) = 1 + 0.625e−1.2t [cos(−0.6435 + 1.6t) − j sin (−0.6435 + 1.6t)

+ cos (0.6435 − 1.6t) − j sin(0.6435 − 1.6t)].

By use of basic properties of sine and cosine functions, the final form of the solution is

obtained:

f (t) = 1 + 1.25e−1.2t sin(0.9273 + 1.6t).

EXAMPLE A2.3

Consider the mass–spring–dashpot system shown in Fig. 11.7. Use Laplace transformation

to find the system transfer function and obtain the step response x(t) for a step change

of force F(t).

SOLUTION

The system differential equations of motion are

m
dv

dt
= F(t) − bv − kx,

dx

dt
= v.

Laplace transformation of these two equations yields

m[sV(s) − v(0−)] = F(s) − bV(s) − kX(s),

sX(s) − x(0−) = V(s),

where x(0−) and v(0−) represent the initial conditions for displacement and velocity of

mass m just before the input force is applied. Now, combining the Laplace-transformed

equations yields

X(s)(ms2 + bs + k) = F(s) + x(0−)(ms + b) + mv(0−).

Assuming zero initial conditions, x(0−) = 0 and v(0−) = 0, the system transfer function

is found to be

T(s) =
X(s)

F(s)
=

1

ms2 + bs + k
.

Next, the system step response is to be found for the input given by

F(t) = �F · Us(t).

The Laplace transform of the input signal is

F(s) =
�F

s
.

Appendix 2: Laplace Transforms 437

By use of the expression for the transfer function, the Laplace transform of the output

signal is found to be

X(s) = F(s)T(s) =
�F

s(ms2 + bs + k)
.

To obtain the solution in the time domain, two cases must be considered. First, assume

that both roots of the quadratic term in the denominator of X(s) are real and distinct,

that is,

ms2 + bs + k = m(s + s2)(s + s1),

where s1 and s2 are real numbers and s1 �= s2. The inverse transform of X(s) in this case

is

x(t) = �
−1 {

X(s)
}

=
�F

m

⎛

⎜

⎜

⎝

1 +
s2e−s2t − s1e−s1t

s1 − s2

s1s2

⎞

⎟

⎟

⎠

.

Now, assume that the roots of the quadratic term in the denominator of X(s) are

complex conjugate, that is,

ms2 + bs + k = m
(

s2 + 2��ns + �2
n

)

.

The inverse Laplace transform in this case is

x(t) = �
−1 {

X(s)
}

=
�F

k

[

1 +

(

1
√

1 − � 2

)

e−��nt sin(�n

√

1 − � 2t + �)

]

,

where

� = tan−1

(
√

1 − � 2

�

)

.

It should be noted that the initial conditions needed when using Laplace transforms,

as well as for computer simulations, are at t = 0−, whereas solutions using the classical

methods of Chap. 4 need initial conditions at t = 0+.

APPENDIX 3

MATLAB Tutorial

A3.1 MATLAB OVERVIEW

MATLAB,1 an interactive and powerful engineering package from The MathWorks,

Inc., is one of the most common software tools used in the analysis and design of

dynamic systems and the control systems implemented on them. The basic package

has many powerful numerical analysis functions as well as the ability to write scripts

and functions to aid in repetitive analysis and to allow the user to augment the

environment with custom capabilities.

Although it is likely that the reader will have a working knowledge of MATLAB,

this tutorial is included to bring the uninitiated reader up to speed and to expose the

casual user to several important features that are pertinent to this text. In this tutorial

we cover the basic running environment of MATLAB (with its default windows), the

fundamental data structure (the matrix), writing scripts and functions, and plotting

data. We also explore some capabilities of the Control Systems Toolbox, which has

many tools designed to aid in the analysis of dynamic systems. Appendix 4 contains

a tutorial for Simulink, a MATLAB add-on, which allows for the rapid development

of system simulations.

A3.1.1 Launching MATLAB

Find MATLAB from the START menu on your computer and launch the application.

Figure A3.1 shows the default frame with the three standard windows. The “current

directory” window has an alternative window that you can access by clicking on the

tab. Figure A3.2 shows the alternative window and describes its function.

A3.1.2 The Command Window

The most important part of the user interface is the command window and the

MATLAB command prompt. The “≫” character combination is the indication that

the MATLAB command window is available for input. By default, the cursor is there.

If you’ve clicked over on another window, you can click back to the prompt to enter

a command. Among the activities you can perform at the command prompt are

� assigning numerical values to variables,
� performing mathematical operations on those values,

1 MATLAB is a registered trademark of The MathWorks, Inc.

438

Appendix 3: MATLAB Tutorial 439

Figure A3.1. The MATLAB window.

� displaying those values graphically,
� storing and retrieving data.

Variables are storage locations in the computer that are associated with an alphanu-

meric name. For example, you can store a numerical value representing your age in

years as a variable named “age.” The syntax for this in MATLAB would be

≫ age=22

Go ahead and enter this (or the correct equivalent) at your command prompt.

The response should look like this:

age =

22

Note that MATLAB echoes the results of any command to the screen, unless

the command is terminated with the semicolon. When a semicolon is placed at the

end of a command line, the output is suppressed. In this case, MATLAB confirms

that a variable called “age” is being used and its numerical value is 22.

440 Appendix 3: MATLAB Tutorial

The Workspace Browser lets
you examine matrices that you

have stored in your workspace

Figure A3.2. Alternative windows in the default frame.

Anything stored in a variable becomes part of the workspace and can be accessed

at any time. To see the value of a variable, simply enter its name at the command

prompt. You can also use the variable in a mathematical expression and MATLAB

will evaluate it, as we will see shortly.

In MATLAB, the fundamental data unit is the “matrix,” which is a regular array

(a table of rows and columns) of numerical values. The smallest matrix is 1 row

by 1 column (referred to as 1 × 1), which is a single numerical value known as a

scalar.

EXERCISE 1: CONVERT TEMPERATURE FROM ◦F TO ◦C

Let’s explore the data manipulation capabilities of MATLAB. We will store a number

in a variable. That number is a value of a temperature in degrees Fahrenheit. We will

convert this value to centigrade. Enter the following commands:

≫ tf=45;

≫ tc=(tf−32)*5/9

Appendix 3: MATLAB Tutorial 441

the results of which will be shown on the screen:

tc =

7.2222

Now we will store a series of numbers in a single variable. This is a matrix with

only one row, but many columns. The subsequent commands illustrate the manner

in which you can enter a series of numerical values in a vector:

≫tf=[45 46 34 38 55 60 65 70]

A very powerful feature of MATLAB is that you can perform operations on the

entire matrix at the same time:

≫tc=(tf−32)*5/9

which results in the following matrix:

tc =

7.2222 7.7778 1.1111 3.3333 12.7778 15.5556 18.3333

21.1111

Finally, we will find the average of these temperatures by using MATLAB’s

mean function:

≫avgf = mean(tf)

≫avgc = mean(tc)

the results of which are left to the reader to discover.

A3.1.3 The WORKSPACE Window

Now that you’ve performed some operations, click over to the workspace window

in the upper left-hand panel. You will see a list of all variable names you’ve used as

well as some information regarding how much memory space they take up. Double-

clicking on any of the variable names brings up a dialog box that allows you to see,

and modify, all values of the matrix in a spreadsheetlike window.

The previous example introduced a matrix made up of a single row (a data

structure sometimes called a vector). In the context of computer programming, we

would call the two variables introduced in the preceding example (tf and tc) “1 by

8 matrices,” meaning that each matrix has 1 row and 8 columns. If you carried out

the example on your own version of MATLAB, this would be a good time to look

at the workspace window where the matrices and their dimensions are listed.

A3.2 MULTIDEMENSIONAL MATRICES

More complex data structures are also easily included. Take for example, the follow-

ing 3 × 3 matrix:

a =

⎡

⎣

1 2 4

6 −3 −1

9 4 −10

⎤

⎦ .

442 Appendix 3: MATLAB Tutorial

This matrix can be entered into the MATLAB environment with the following

command:

≫ a=[1 2 4; 6 -3 -1; 9 4 -10]

Note that the different columns are separated by spaces, the rows by semicolons.

Alternatively, the following command will also work:

≫ a= [1 2 4

6 -3 -1

9 4 -10]

In this case, the columns are still separated by spaces and the rows by carriage

returns. Either method works and the choice is left up to the user’s discretion.

Now we have a 3 × 3 matrix entered in the MATLAB environment. What if

you made an error in typing in the data and needed to change just one value of the

matrix? It would be great if you could alter just one value of the matrix without

retyping the entire data set. MATLAB gives you an easy method of doing just that.

If, for example the first element of the second row (second row, first column) was

mistyped and you wanted to replace the erroneously entered data with the correct

value of 6, you would issue the following command:

≫a(2,1) = 6

It sometimes helps to put words to a command like this, to be clear what

the MATLAB environment will do in this case. This command would be stated

as “Take the element in the 2nd row and 1st column of the matrix designated as

‘a’ and store the value of ‘6’ in that place (regardless of whatever is stored there

previously).”

A3.2.1 Linear Algebra

If the reader is at all familiar with linear algebra, the power of the MATLAB envi-

ronment may now be coming clear. Take, for example the following set of algebraic

equations in x1, x2, and x3:

x1 + 2x2 + 4x3 = 15,

6x1 − 3x2 − x3 = 8,

9x1 + 4x2 − 10x3 = 0.

This set of three equations with three unknowns can be recast in matrix form:
⎡

⎣

1 2 4

6 −3 −1

9 4 −10

⎤

⎦

⎡

⎣

x1

x2

x3

⎤

⎦ =

⎡

⎣

15

8

0

⎤

⎦ .

It might aid our discussion to assign names to the matrices in this equation. Let’s

call the square matrix A, the vector containing the unknowns x, and the vector on

the right-hand side b. The equation now becomes

Ax = b,

Appendix 3: MATLAB Tutorial 443

and we can find the solution by inverting the matrix A:

x = A−1b,

where the inverse of the square matrix is shown as the exponent.

There’s a variety of ways to solve this problem, and many numerical algorithms

have been proposed to invert a matrix. No doubt you have a calculator that is capable

of inverting a matrix of modest dimensions. MATLAB also has this capability. Note

that the matrix A is the same matrix we have already entered into the MATLAB

environment previously. We now wish to enter the b matrix:

≫ b = [15; 8; 0]

Note that b is a 3 × 1 matrix and each row is separated by a semicolon. Now we

solve the equations:

≫ × = inv(a) * b

and the solution is

x =

2.3471

1.1676

2.5794

It is left as an exercise for the student to verify this solution.

A3.2.2 Manipulating Matrices

Sometimes it’s important to manipulate entire rows or columns of a matrix (as we will

see when we consider plotting command). In this situation, the colon (:) operator

is invaluable. The colon acts as a placeholder or wild card when addressing the

individual elements. Recall that, in the previous section, we were able to address a

single element in the matrix by specifying the specific row and column of the element

we wished. These numbers specifying the placement are called indices of the matrix.

The following command would allow you to see (and hence, manipulate) the entire

second row of the matrix:

≫ a(2,:)

Likewise, if you wished to see the entire first column:

≫ a(:,1)

Following the previous example, it’s helpful to put this command in words. The

last command says “take the matrix a and show me all rows in the first column.”

Similarly, the first command would say “take the matrix a and show me the second

row, all columns”.

This notation introduces yet another way of entering matrices into the workspace.

Instead of a single command in which all elements are entered at once, you can enter

444 Appendix 3: MATLAB Tutorial

the data one row or one column at a time. For example, the 3×3 matrix previously

used could be entered this way:

≫ a(1,:) = [1 2 4]

≫ a(2,:) = [6 −3 −1]

≫ a(3,:) = [9 4 −10]

A3.3 PLOTTING IN MATLAB

One of the strengths of the MATLAB environment is its data visualization capabili-

ties. From simple x – y plots of paired data to complex three-dimensional visualization

and rendering techniques, MATLAB provides users with a complex array of flexible

tools for plotting and graphing. In this section, we limit our discussion to those tools

that are most often used to plot time-based sequences, like the time response of

dynamic systems to various inputs or initial conditions.

First, we introduce another use of the “:” operator in the environment. At the

command prompt, issue the following command:

≫ t = [0: 0.01: 1.0]

This command creates a matrix that is 1 row by 101 columns. The elements are a

regularly spaced sequence starting at 0 (the first element), spaced by 0.01 (the second

element), and ending at 1.0 (the third element). This is a handy and easy method of

generating an array of regularly spaced elements and works for both positive and

negative increments.

In Chap. 4, we solved first- order differential equations that describe the response

of systems with one energy-storing element. Let us look at one such response:

y = 5
[

1 − e−3t
]

.

This describes a step response with a time constant of 1/3 s and a steady-state response

of 5.0.

To visualize this response, first we must compute it over a range of values for

time. The following command uses MATLAB’s flexible matrix operations to perform

this in one command:

≫ y=5*(1−exp(−(1/0.333)*t));

which should result in a new matrix in the workspace, which is also 1 row by 101

columns. To see what this response looks like, simply use the plot command

≫ plot(t,y)

which results in a plot like the one shown in Fig. A3.3.

Although space limitations demand that we skim only the surface of MATLAB’s

plotting capabilities, let’s explore this a little further.

Now compute two different responses, both with a steady-state value of 5 but

with time constants of 0.5 and 1, respectively:

≫ y1=5*(1−exp(−(1/0.5)*t))

≫ y2=5*(1−exp(−1*t))

Appendix 3: MATLAB Tutorial 445

Figure A3.3. Response vs. time plot by use of the MATLAB plot command.

Each response can be plotted one at a time, as indicated in the preceding discus-

sion, but it would be more instructive to plot them on the same plot:

≫ plot(t,y,t,y1,t,y2)

The results are shown in Fig. A3.4.

As an exercise, the reader is instructed to further explore the plot function

using the following command,

≫ help plot

and to try out various options.

A3.4 PROGRAMMING IN MATLAB

Although the tutorial to this point describes the capabilities of the interactive envi-

ronment, the true power and flexibility of MATLAB can be achieved only through

user programming. In this section, we explore the two different methods available

to add custom additions to the environment: scripts and functions.

A script is a series of MATLAB commands that are stored in a separate file on

your computer hard drive. When that script is invoked (by typing the filename at

the MATLAB prompt), the commands stored in the file are automatically executed.

All variables created by the script are stored in the workspace. Likewise, any vari-

able referenced (accessed) by commands in the script are assumed to exist in the

workspace.

446 Appendix 3: MATLAB Tutorial

Figure A3.4. Multiple response plots in MATLAB.

To truly appreciate the flexibility of scripts, you should learn to use program flow

control commands (while, if, until, for) and to use variables as indices to

matrices. These topics are beyond the scope of this tutorial, but are similar to any

discussion applied to programming languages such as c, c++, fortran, and basic.

As an example, let us assume that the three step responses that we used to

illustrate the plot command are to be used repeatedly in future sessions. It would be

nice if we could gather up all the commands we used to generate those matrices and

then we would have to issue only a single command every time we restart our work.

We begin by starting the m-file editor, an integral part of the MATLAB envi-

ronment. We easily do this by clicking on the standard “new document” icon at the

very far left end of the MATLAB toolbar. The m-file editor is a text editor that is

‘‘aware’’ of the MATLAB syntax and automatically flags errors as you type.

In the new document window, type in the commands that generated and plot-

ted the three responses we previously saw. The m-file editor window should look

something like Fig. A3.5.

Not that the ; operator was used at the end of each of the commands. The

semicolon does not change the computation of the command but does suppress

the output to the screen. For debugging purposes, removing the semicolons allows

the user to see intermediate computational results. On the other hand, suppressing

output greatly speeds performance.

Before you can run the script, you must store it as a file on your hard drive. Using

the standard Windows “Save As” menu calls up the default subdirectory (usually one

called workwithin the MATLAB directory structure.) Save this file as ‘‘myfile’’ (the

Windows extension .m is automatically appended.) Note that, once the file has been

Appendix 3: MATLAB Tutorial 447

Figure A3.5. M-file editor window with a sample script.

stored, the title bar of the editor window shows the name, and directory path, of the

file you’re working on. Note also that an asterisk sometimes appears on the title bar.

This indicates that changes made to the file have not yet been saved. The file must

be saved before the changes will be in effect.

Before you run the file, you should clear out the workspace so that you can

observe the results of your script. The clear command is simple and intuitive:

≫ clear

the results of which can be observed in the workspace window.

To run the file, click over to the command window and simply type the name of

the file:

≫ myfile

The workspace window should immediately show the returned matrices and the

figure window should show the plot as before. If you made a mistake in your typing,

an error message would have been visible in the command window, indicating the

line in your m-file where the execution was halted.

Script files are very handy for taking care of repetitive tasks and recalling fre-

quently used groups of commands. However, the second kind of m-file, the function

m-file, is far more powerful.

Keeping with our example, let us assume that we wish to compare the responses

with systems with three different time constants, but the values of those time constants

448 Appendix 3: MATLAB Tutorial

are likely to change. Further, let us assume that we wish not only to see the responses

plotted, but we wish to store all the responses in one large matrix, with each response

occupying a single column of the matrix. For the sake of completeness, and because

this is a common data structure in MATLAB, we will also include the time sequence

as the first column of this matrix. The resulting matrix is 4 columns (1 for time, 3 for

the responses) and 101 rows.

Much of the code we’ve already written will form the basis of our new program.

So we make another copy of this file by saving it as ‘‘myfunc’’ using the ‘‘Save As’’

function.

The main thing that distinguishes functions from scripts is the declaration com-

mand at the top of the file. The first line for our function is

function myfunc(tau1,tau2,tau3)

The first word is a reserved word in the environment and hence becomes blue

in the editor window. The next is the name of the function (same as the name of

the file) followed by a list of arguments. These are variables that represent the

data that will be passed to the function when it is called from the command line

or from another m-file. In this case the three variables represent three different time

constants.

Now we edit the script file so that the time constants in the responses are replaced

with our arguments. The editor window will now look something like Fig. A3.6.

Figure A3.6. Editor window with new function.

Appendix 3: MATLAB Tutorial 449

Now go back to the command window, issue the clear command, and invoke

this function with the same three time constants (0.333, 0.5, 1.0):

≫clear

≫myfunc(0.333,0.5,1.0)

Note the results in both the plot and workspace windows.

The plot window should have the same appearance as Fig. A3.4, but you will

note that the workspace window is empty. What happened to the matrices that were

formed within the function? This question points out another important difference

between script files and functions. Script files operate just as if the commands were

issued at the command prompt with access to all workspace variables and any new

data generated stored in the workspace. Functions, on the other hand, do not interact

directly with the workspace nor are the data they generate stored in the workspace.

All variables generated within the functions are local to that function and cease to

exist once function execution is completed. To get data back to the workspace, the

function must return the data structure as part of the call.

Now let’s modify the function to generate the 101 × 4 matrix containing all the

responses and return the function to the calling workspace.

The following command will build up our larger matrix:

resp=[t’ y’ y1’ y2’];

Note that the individual vectors now make up the columns of our new matrix

resp. Note also that the apostrophe operator is used to indicate the transpose of

the individual matrix is stored. The transpose of a matrix is one in which all rows

are swapped to columns. Therefore the transpose of a 1 × 101 matrix (like all of our

matrices to date) becomes a 101 × 1 matrix. Because we wish to store the responses

in columns of our new matrix and because the original vectors are all row vectors,

transposes become necessary.

The final step to complete our function is to modify the declaration statement

to indicate that some data structure will be returned. The editor window, as seen in

Fig. A3.7, shows the correct syntax.

Finally, we will demonstrate two different uses of the function from the command

line.

First, type this command:

≫myfunc(0.333,0.5,1.0)

Once again, the plot window should show the expected results, but two different

effects are visible in the command window. First, a new variable appears in the

workspace, called ans, and second, the entire new 101 × 4 matrix is echoed to the

screen. The variable name ans is used by MATLAB whenever it is asked to generate

a result, but the user didn’t provide a variable name. It is the default for results to be

stored.

Now issue the following command:

≫ mymat = myfunc(0.3333,0.5,1.0);

450 Appendix 3: MATLAB Tutorial

Figure A3.7. MATLAB Function returning a matrix.

In this case, the semicolon will suppress output to the screen, but the new matrix,

mymat, is now present in the workspace. It’s important to note that the names you

use for variables (either returned or as arguments) in the workspace are not related at

all to the names you chose for variables within the function itself. Once the function

is up and running, any user should be able to use it with no knowledge of its inner

workings at all. This concept is a very important cornerstone in good programming

practice.

One final point before we move on. The following command uses the MATLAB

plot command along with the colon operator to plot just the second response from

the matrix returned from the function call (recall that the first column of the matrix

mymat contains time, the second the first response, and so on). The reader is encour-

aged to investigate this syntax and explore its use further:

≫plot(mymat(:,1),mymat(:,3))

A3.5 SOLVING ORDINARY DIFFERENTIAL EQUATIONS IN MATLAB

A3.5.1 Mathematical Overview

As discussed in the text, an important implication of state-space theory is that all

lumped-parameter systems can be represented as a system of first-order differential

equations. This makes it possible to develop a general numerical method for the

Appendix 3: MATLAB Tutorial 451

solution of these systems. Chapter 5 describes the general nature and structure of

these algorithms, and Chap. 6 and Appendix 4 deal with the use of higher-level

simulation packages like Simulink to construct complex, yet well-structured, models

of physical systems.

MATLAB offers yet another approach to the solution of ODEs by providing a

set of algorithms that can be invoked directly from the command line, or from other

files and functions. In this case, the model structure is provided in the form of an

m-file function that takes the current state of the system as input and returns a vector

of the values of the derivatives.

MATLAB has at least seven different ODE solver algorithms to choose from,

and the plusses and minuses are discussed at some length in the MATLAB help

documentation. For a large portion of electromechanical systems, ode45 provides

excellent results. This will form the basis of the examples to demonstrate the tech-

nique.

The simplest form of the solution command is

≫ [T,Y] = ode45(odefun,tspan,y0)

with the components defined as follows:

T is a vector. On execution, the time steps for which the output (Y) was computed

is stored there.

Y is a matrix. Each column corresponds to a state of the system; each row

is the value of the states at the time step indicated in the corresponding row

of T.

odefun is a pointer to the function that represents the system (evaluates the

derivatives). Because it is a pointer, the form of this arguments is @myfunc.

tspan is a vector representing the time values over which the solution is to be

carried out. At a minimum it should hold two values, the initial time (usually 0)

and the final time.

y0 is a vector containing the initial conditions of the state variables.

EXAMPLE A3.1: FIRST-ORDER SYSTEM

Consider a simple system consisting of a large rotating mass (J) subject to a time-varying

input torque (T) and a linear, velocity-dependent friction torque (B). The differential

equation that describes this system can be written as follows:

J �̇ + B� = T.

Because the function describing the system is essentially the same as the state equa-

tions, this system is recast as a single state equation.

�̇ = −
B

J
� + T.

For the purposes of this example, we assume that the system is at rest with no input

torque. After 1 s has passed, the torque suddenly changes to a value of 1.0. The m-file

452 Appendix 3: MATLAB Tutorial

function that represents this would look like this:

function ydot = mysys(t,y0)

%

B =10;

J = 2;

%

if t > 1.0

torque = 1.0;

else

torque = 0;

end

%

ydot = -B/J*y0 + torque;

This file is stored in the working directory as mysys.m.

The solution is computed by the following command:

≫ [tout,yout]=ode45(@mysys,[0 3],[0])

Note the manner in which the m-file function is indicated in the function call. The @

sign is an operator that allows MATLAB to easily find your function.

After this command is successfully executed, the results can be plotted:

≫plot(tout,yout)

Figure A3.8 shows the results.

Figure A3.8. Step response of example system using ode45().

Appendix 3: MATLAB Tutorial 453

To further explore this technique, the reader is encouraged to implement this example

and explore the response for various parameter values (B and J) and various step times

and torque magnitudes.

EXAMPLE A3.2: NONLINEAR AND HIGHER-ORDER PROBLEMS

Although Example A3.1 clearly illustrates the method, the astute reader will recog-

nize that the response can easily be found analytically and little was gained by using a

computer-based solution. Such is not often the case, and, in this example, a more complex

and nonlinear system is examined.

In the study of electronic systems, a class of systems called relaxation oscillators

is often encountered. One of these is a well-studied nonlinear system called the Van

Der Pol oscillator. The model of the Van Der Pol oscillator is a second-order nonlinear

ODE,

d2 y

dt2
− �

(

1 − y2
) dy

dt
+ y = 0,

where � is a parameter of the system and related to the physical properties of the circuit

components.

The equation must first be recast in state-space form. You can begin the process by

solving for the highest derivative:

d2 y

dt2
= �

(

1 − y2
) dy

dt
− y.

The two states are defined as follows:

x1 =
dy

dt
,

x2 = y.

The state equations are now easily written:

ẋ1 = �
(

1 − x2
2

)

x1 − x2,

ẋ2 = x1.

Translating these equations to an m-file is a straightforward procedure:

function xdot = vandp(t,x)

%

% x(1) − first state variable

% x(2) − second state variable

%

mu = 3;

%

xdot1 = mu*(1 − x(2)ˆ2)*x(1)−x(2);
xdot2 = x(1);

xdot=[xdot1;xdot2];

454 Appendix 3: MATLAB Tutorial

Note how the added dimension of this example requires some additional details.

First, the argument that passes the current value of the states (called x here) is a vector,

the length of which is equal to the order of the system (2, in this case). Second, the value

that is returned (xdot) is also a vector. Finally, note that the MATLAB solvers expect

the derivatives to be returned as a column vector. The last line in the preceding function

ensures that this requirement is met.

Now the equation is solved for time from 0 to 30 s and initial conditions of zero for

the value of x1 and 1.0 for the value of x2:

≫ [tout,yout]=ode45(@vandp,[0 30],[0 1]);

Plot the solution with this command

≫plot(tout,yout(:,1),tout,yout(:,2))

the results of which can be seen in Fig. A3.9.

For second-order nonlinear equations, it is often illuminating to plot the two states

against each other, eliminating time as an explicit coordinate. The result is a graphic

illustration of the actual state trajectory; a plot such as this is called a phase plot of the

system. The follow command will generate a phase plot:

≫ plot(yout(:,2),yout(:,1))

which is shown in Fig. A3.10.

Figure A3.9. Response of Van Der Pol oscillator for 30 s.

Appendix 3: MATLAB Tutorial 455

Figure A3.10. Phase plane plot of the system.

A3.6 SYSTEM ANALYSIS IN MATLAB

The main object of the tools and techniques presented in this text is the development

of a model to describe the dynamic behavior of a physical system. The most useful

model has the form of linear differential equations with constant coefficients. In the

field of control systems, this subclass of system models is known as LTI, or linear

time-invariant, models. As we’ve seen throughout the text, such models can take

on various forms, the most common of which are state-space models and transfer

function models. The Control Systems Toolbox, a very widely used extension of the

MATLAB environment, provides a series of powerful algorithms and routines that

allow the user to store, manipulate, and analyze LTI models.

There are four ways of specifying LTI models in MATLAB:

� Transfer function (TF) models: These are ratios of polynomials in s, as introduced

in Chap. 11 of the text.
� Zero-pole-gain (ZPK) models: Similar to the transfer function models, except

that the polynomials are factored and the zeros and poles are explicitly visible in

the model representation.
� State-space (SS) models: These models comprise the four state-space matrices as

discussed in Chap. 3.
� Frequency-response data (FRD) models: These are models based on empirical

frequency-response data and are beyond the scope of this text.

The routines used to store the first three models in the MATLAB environment

are briefly described here.

456 Appendix 3: MATLAB Tutorial

A3.6.1 Transfer Function (TF) Object

This object and the functions for storing and manipulating it are described in some

detail in Section 11.7, but the essence is described here as well.

Consider the following transfer function:

T (s) =
10s + 50

s3 + 19s2 + 104s + 140
.

MATLAB recognizes a vector of coefficients as representing a polynomial with

those coefficients, with the highest-order term coming first. Therefore we can store

the two polynomials as row vectors in MATLAB:

≫ num=[10 50]

≫ den=[1 19 104 140]

The transfer function object is generated with MATLAB’s tf() function:

≫ mytf=tf(num,den)

to which MATLAB responds by echoing the transfer function to the screen in

readable format:

Transfer function:

10 s + 50

sˆ3 + 19 sˆ2 + 104 s + 140

A3.6.2 Zero-Pole-Gain (ZPK) Object

ZPK models are transfer functions that have been factored into the following form:

T (s) = k
(s − z1) (s − z2) . . . (s − zm)

(s − p1) (s − p2) . . . (s − pn)
,

where zi is the ith zero of the transfer function and pi is the ith pole.

Consider a transfer function that has a single zero at −5 and three poles, located at

−10, −7, and −2. The steady-state gain (value of the transfer function as s approaches

0) is 0.357:

T (s) = k
(s + 5)

(s + 10) (s + 7) (s + 2)
.

To find k, we must find the expression for the steady-state gain of the transfer

function by taking its limit as s approaches zero and set that gain equal to the desired

value of 0.357:

0.357 = k
(5)

(10) (7) (2)
.

Solving for k:

k=10.0

Appendix 3: MATLAB Tutorial 457

To create the ZPK object, first store the zeros and poles as vectors, then use the

ZPK command:

≫ k=10;

≫ z=[−5];

≫ p=[−10 −7 −2];

≫ myzpk=zpk(z,p,k)

Zero/pole/gain:

10 (s+5)

(s+10) (s+7) (s+2)

Again, MATLAB provides direct feedback to verify that you’ve entered the data

correctly.

A3.6.3 State-Space Object

Consider a third-order linear system represented by the following state-space model:

ẋ = Ax + Bu,

y = Cx + Du,

where

A =

⎡

⎣

−19 −1.625 −0.2734

64 0 0

0 8 0

⎤

⎦ ,

B =

⎡

⎣

0.5

0

0

⎤

⎦ ,

C =
[

0 0.3125 0.1953
]

,

D = [0] .

The ss command takes these matrices as arguments and creates the state-space

object:

≫ mysys=ss(a,b,c,d)

a =

x1 x2 x3

x1 -19 -1.625 -0.2734

x2 64 0 0

x3 0 8 0

b =

u1

x1 0.5

x2 0

x3 0

458 Appendix 3: MATLAB Tutorial

c =
x1 x2 x3

y1 0 0.3125 0.1953

d =
u1

y1 0

A3.6.4 Converting Between Model Formats

The three functions previously described, tf, zpk, and ss, were shown as ways

of creating the various forms of LTI system models in the MATLAB environment.

They can also be used to convert between the various forms. To do this, simply use

the LTI object as the argument in the function call:

≫newtf=tf(mysys)

≫newss=ss(myzpk)

≫newzpk=zpk(mytf)

It is left as an exercise for the reader to verify that the three models used in the

preceding examples are all realizations of the same LTI model.

A3.6.5 Analysis and Manipulation of LTI Models in MATLAB

Once the objects are stored in the MATLAB workspace, they can be manipulated in a

fairly intuitive manner. As described in Section 11.7, two systems in series (cascaded)

can be combined by multiplying the objects in MATLAB. Similarly, two systems in

parallel can be combined by adding their objects. In addition, several other functions

are provided to compute unit step responses, frequency-response (Bode) plots, and

root-locus diagrams. Tables A3.1–3.3 summarize these functions and indicate the

chapters in the text that provide theoretical background for these functions.

Table 3.1. Summary of system object creation and conversion functions

MATLAB command Description Reference

≫newtf=tf(mysys) Converts any other system object
to a TF object

Chaps. 3 and 11

≫newzpk=zpk(mysys) Coverts any other system object
to a ZPK object

≫newss=ss(mysys) Converts any other system object
to a SS object

Chaps. 3 and 11

≫mysys=zpk(z,p,k) Creates a ZPK object from
vectors of zeros, poles, and gain

≫mysys=ss(A,B,C,D) Creates a SS object from
state-space matrices

Chap. 3

≫mysys=tf(num,den) Creates a internal system
representation TF object from
transfer function polynomials

Chap. 11

Appendix 3: MATLAB Tutorial 459

Table 3.2. Summary of system time-domain functions

MATLAB command Description Reference

≫step(mysys) Generates the time response of the
system to a unit step input

Chap. 4

≫impulse(mysys) Generates the time response to an
impulse of unity strength

Chap. 4

≫initial(mysys,x0) Generates the time response of the
system to initial conditions

Chaps. 3, 4, 6

≫lsim(mysys,u,t,x0) Generates the time response of a
system to arbitrary inputs and
initial conditions

Chaps. 3, 4, 5, 6

EXAMPLE A3.3

Start by entering the model used in the preceding discussion regarding the creation

of system objects. In this case, we’ll use the transfer function form, but any would

work:

≫ num=[10 50]

≫ den=[1 19 104 140]

The transfer function object is generated with the tf function:

≫ mytf=tf(num,den)

Transfer function:

10 s + 50

sˆ3 + 19 sˆ2 + 104 s + 140

Table 3.3. Summary of system frequency-domain functions

MATLAB Command Description Reference

≫bode(mysys) Plots the Bode plot (frequency response)
for the system

Chap. 11

≫nyquist(mysys) Plots the Nyquist diagram (polar frequency
response) for the system

Chap. 12

≫rlocus(mysys) Generates an interactive root-locus plot for
control system design

Chap. 13

≫evalfr(mysys,f) Evaluates the frequency response at a
single (complex) frequency

Chap. 12

≫H=freqresp(mysys,w) Evaluates the complex frequency response
over a grid of frequencies

Chap. 12

≫nichols(mysys) Plots the Nicols plot of the system (used in
control system design)

≫sigma(mysys) Generates a plot of singular values for
multi-input–multi-output systems

460 Appendix 3: MATLAB Tutorial

Now, enter a new transfer function as shown:

≫ num=10;

≫ den=[1 2 100];

≫ tf2=tf(num,den)

Transfer function:

10

sˆ2 + 2 s + 100

Assuming the two transfer functions represent two systems that are cascaded (con-

nected in series), create a new transfer function representing the overall system dynamics:

≫ tfall=mytf*tf2

Transfer function:

100 s + 500

sˆ5 + 21 sˆ4 + 242 sˆ3 + 2248 sˆ2 + 10680 s + 14000

Although it’s possible to use the analytical tools described in Chap. 4 to compute the

step response of this system, MATLAB provides a very straightforward approach:

≫step(tfall)

which generates the plot shown in Fig. A3.11.

Equally straightforward, but of considerably more utility in control system design, is

the Bode plot:

≫bode(tfall)

Figure A3.11. Step response obtained with the Control Systems Toolbox step function.

Appendix 3: MATLAB Tutorial 461

Figure A3.12. Bode plot of example system obtained with the bode command.

which results in the frequency-response plot shown in Fig. A3.12 for this system.

This result is best appreciated by those who have done the computations required

for such a plot by hand or other more laborious means.

A3.7 GOING FURTHER: STORING DATA AND GETTING HELP

Often, it’s useful to store the contents of the MATLAB workspace and restore the

data at a later session. The MATLAB save and load functions are useful in this

case. Follow the subsequent instructions to become familiar with these features.

(1) Use the “current directory” window to set the current directory to a suitable work

directory such as a floppy disk that you’ve supplied or a directory on your installation’s

network drive, where you wish to store data.

(2) Use MATLAB’s HELP command to find out more information about the save

command. Type help save at the command prompt. Note that the command has

many options, but you need concern yourself with only the simplest implementation

(save filename).

(3) Save the contents of your workspace to a filename of your choosing.

(4) Verify that the file exists on your floppy or in the directory of the command drive.

(5) Use MATLAB’s clear command to erase all variables in the workspace.

(6) Verify that there is nothing stored in the workspace (try help who to learn about a

useful command here).

(7) Use the load command to restore your data (help load to find more) and verify

that your workspace has been restored.

462 Appendix 3: MATLAB Tutorial

Figure A3.13. MATLAB’s powerful Helpdesk feature.

A3.7.1 The HELP Functions

In the previous exercise, you’ve used the help command to get details about a

specific function. As helpful as that is, you will find that the help command is not

very useful for finding information when you don’t know the specific function name.

For that, use MATLAB’s helpdesk feature. Enter this command at the prompt:

≫ helpdesk

A new window is opened featuring a weblike browser interface on the right

and a typical help window on the left, as seen in Fig. A3.13. Together, they make

a powerful tool for discovering more about MATLAB’s features and capabilities.

Take some time now to discover two or three features about MATLAB that you

think might be useful.

APPENDIX 4

Simulink Tutorial

A4.1 OVERVIEW OF SIMULINK

This tutorial is intended to acquaint the reader with the rudiments of Simulink,1 the

MATLAB add-on that allows engineers and researchers to rapidly develop and run

computer simulations of dynamic systems by using a block-diagram-oriented graph-

ical environment. As with the MATLAB environment itself, the Simulink package is

a very rich and versatile tool that is constantly developing. The best we can hope to

accomplish with this tutorial is to inspire interest and start you on the path to devel-

oping a strong competence in the area of computer simulation of dynamic systems.

A4.2 LAUNCHING THE SIMULINK LIBRARY BROWSER

Figure A4.1 shows the default configuration when MATLAB launches in a Windows

environment. If Simulink is installed as part of the package, the multicolored icon

will appear in the tool bar. The first step in building models is launching the Simulink

Library Browser by clicking on that icon.

Figure A4.2 shows a typical library browser window. Your installation may look

different because the installation of different MATLAB and Simulink add-ons such

as the Signal Processing, Artificial Neural Networks, or Fuzzy Logic toolboxes.

A4.2.1 Starting a New Model

Start modeling in Simulink by clicking on the standard “new document” icon on the

Library Browser toolbar. That opens a new, blank window on your desktop similar

to the one shown in Fig. A4.3.

Building a simulation requires two operations; dragging and dropping blocks

from the library and connecting the ports on the blocks by using mouse clicks and

drags (like any drawing program). Let’s proceed with a very simple example to

demonstrate the operation of a simulation. Drag three blocks into the new model

window, an integrator block (from the continuous block library), a step input block

(from the sources library), and a scope block (from the sinks library). Connect the

output of the step to the input of the integrator and the output of the integrator to

the input of the scope. Your model window should now look something like the one

shown in Fig. A4.4.

1 Simulink is a registered trademark of The MathWorks, Inc.

463

Launch Simulink by

clicking here

Figure A4.1. The MATLAB main window.

Figure A4.2. The Simulink library browser.464

Appendix 4: Simulink Tutorial 465

Figure A4.3. New model window in Simulink.

To run the simulation with default settings, double-click on the scope block so

you can see its display and click on the run button (the right-facing triangle on the

window toolbar) and observe the results. The scope display should be similar to the

one in Fig. A4.5.

Figure A4.4. Simple model with input, integrator, and output scope.

466 Appendix 4: Simulink Tutorial

Figure A4.5. Scope output from simple integrator model.

Some discussion of this result is in order. By default, the step-input block starts

at 0 and abruptly changes to 1.0 at t = 1.0 s. Thereafter it remains at 1.0. Note that the

output of the integrator starts at zero (the initial condition of the integrator) until the

step time (1 s) is reached, then rises in a straight line, the slope of which is 1.0 (value

of the step) for the duration of the simulation. By default, Simulink simulations run

for 10 s.

All of the features discussed in the preceding paragraph can be adjusted to suit

the simulation: step time, step magnitude, initial conditions of the integrator, and

simulation time. By double-clicking on the blocks, you bring up a dialog box that

allows the user to change the settings of each box. Make the following changes to

your simulation:

� Double-click on the step input and change the step time to 2.0 s and the final

value to 0.5.
� Change the initial condition of the integrator to –1.0
� Using the “Simulation|Configuration Parameters” menu selection, set the stop

time to 5.0 s. (Note: In Version 6.0 and later of Simulink, this can also be accom-

plished directly on the toolbar of the model window.)

The simulation window looks the same as it did before, but this time we would

expect the output to begin at –1 (the initial condition of the integrator), to change

at 2.0 s (the step time), and the slope of the ramp to be about half as steep (the

magnitude of the step becomes the slope of the ramp). Run the simulation and

observe the results. If all goes well, the output looks something like Fig. A4.6.

Appendix 4: Simulink Tutorial 467

Figure A4.6. Scope output for simple integrator with modified parameters.

EXAMPLE A4.1: SIMULATING A FIRST-ORDER SYSTEM

Consider the following differential equation in y(t) with input u(t):

a1
dy

dt
+ a0 y = b0u. (A4.1)

The first step in simulating the system represented by this equation is solving for the

highest derivative:

dy

dt
=

b0

a1
u −

a0

a1
y. (A4.2)

Once the equation is in this form, it suggests the form of the simulation block

diagram. The simulation will have one integrator block (indicated by the fact that

it’s a first-order system). The output of the integrator is the dependent variable, y(t).

Therefore the input to the integrator block is the derivative of y, which is defined

by Eq. (A4.2). So now we can expect to see a simulation block diagram in which

the input to the integrator is the difference between two signals, one proportional to

the input that drives the system and one proportional to the variable in question, y.

We can use the simple integrator from the previous example and modify it to build

this simulation. We will need two new kinds of blocks, the gain block that multiplies

a signal by a constant gain (the same as a constant coefficient in an equation) and

a summation block that adds or subtract signals. Both can be found in the math

operations library. Drag a copy of each of these blocks into your simulation window,

as shown in Fig. A4.7.

468 Appendix 4: Simulink Tutorial

Figure A4.7. Beginning the modifications for the new simulation.

On inspection, you can see that we really need two gain blocks in this simulation

because there are two constant coefficients. Instead of dragging a new gain block

from the library, right-click on the gain block in this window and drag to create a

copy. This is a very useful feature of Simulink that the reader is well advised to learn.

Now break the existing connections (select, then press the delete key) and form a

new block diagram similar to the one shown in Fig. A4.8.

We’re not done yet, but let’s take a minute to point out two new operations that

were required for getting this far. First, the second gain block (below the integrator)

is pointing the other way. This is easily accomplished by selecting the block and

choosing “flip block” from the format menu. Second, we had to “tap off” from a

signal line to have the output of the integrator serve as input to both the scope block

and the second gain block. Tapping a line is done by positioning the cursor over the

line to be tapped and right-clicking, then dragging.

Now we need to make sure the settings are correct. The observant reader will

notice that the summation block is adding the two signals together, not subtracting

them as demanded by the equations. Fix this by double-clicking on the summing

block. In the slot labeled “list of signs” change the string “|++” to “|+−” to get

the desired effect. Adding signs to the string creates more ports on the block, allow-

ing you to add and subtract an arbitrary number of signals for more complicated

simulations.

This would be a good time to change the labels on the blocks to create a more

readable block diagram. Click on the block labels to edit them. Figure A4.9 shows

a possible set of labels. Note that the convention is to label the integrator blocks to

indicate the output of the blocks.

Appendix 4: Simulink Tutorial 469

Figure A4.8. The structure of the simulation is complete.

Figure A4.9. Simulation with block labels.

470 Appendix 4: Simulink Tutorial

Before we proceed, we must assign numerical values to the coefficients, decide on

an input, and verify the initial condition for the simulation. Let’s choose the following

values:

a0 = 2.0,

a1 = 4.0,

b0 = 8.0,

which leads to the following ratios:

b0

a1
= 2.0,

a0

a1
= 0.5.

The first ratio is the value of the gain labeled “Input Gain” in Fig. A4.9, and the

second ratio is the value for the other gain. Double-click on the gain blocks and set

them accordingly. As you can see in Fig. A4.10, the gain blocks now show the values

that you’ve set.

Finally, set the Step Input to transition from 0 to 1 at 1 s, and set the initial

condition of the integrator to 0.0 and the simulation time to 10 s (all defaults). Open

the scope block and run the simulation. Figure A4.11 shows the output from this

simulation on the scope.

It is left to the reader to verify that this is the expected unit step response for

this differential equation.

Figure A4.10. The simulation with the gains set.

Appendix 4: Simulink Tutorial 471

Figure A4.11. Scope output showing a step response of a first-order system.

EXAMPLE A4.2: NONLINEAR SIMULATIONS AND USER-DEFINED FUNCTIONS

The previous sections described the use of Simulink to simulate a linear first-order system,

which is easily solvable with traditional analytical techniques. The true power of computer

simulations lies in their ability to solve nonlinear problems and those of arbitrary order.

In this section, we explore methods needed for the solution of nonlinear equations.

As described in Appendix 3, a very common nonlinear differential equation is the

Van Der Pol equation, which describes the oscillations of circuits by use of vacuum tubes.

A common form the the Van Der Pol equation is

d2 y

dt2
− �(1 − y2)

dy

dt
+ y = 0. (A4.3)

This equation is a second-order equation; hence we expect a simulation with

two integrators. Building the simulation is an exercise in manipulating the Simulink

blocks to carry out the operations expressed in the equation. However, for equations

of this, and greater, complexity, a more direct and elegant approach is called for.

Simulink provides a number of ways to introduce user-defined functions, the most

versatile of which is the MATLAB FCN block. We will use this block to compute the

highest derivative of our system, given the values of the states. Figure A4.12 shows

the beginning of the model structure.

The MATLAB function block allows you to call a user-defined m-file function

(see the description of m-files in Appendix 3) from within a Simulink model. Before

we get into the details of the function, it’s important to complete the model definition.

472 Appendix 4: Simulink Tutorial

Figure A4.12. Introducing the MATLB FCN block.

From the preceding model, it should be clear that the function will compute the

value of the second derivative. Mathematically, it should carry out this evaluation:

d2 y

dt2
= �

(

1 − y2
2

)dy

dt
− y. (A4.4)

The function that computes this must therefore have access to the current values

of both y and its derivative. From Fig. A4.12, y is the output of the right-hand inte-

grator whereas dy/dt is clearly the value between the two integrators. Figure A4.13

shows the next step in building the simulation.

Note that we have two values that need to attach to the input of the function

block, but only one input port. We solve this difficulty by using yet another Simulink

block, the Multiplexor or MUX block. The MUX block takes its name from an elec-

tronic component that allows two or more signals to share a common communication

channel. The MUX block therefore has one output and an arbitrary number of inputs.

You will find the MUX block in the “Signal Routing” library in Simulink. By default,

the MUX block has two inputs, but you can easily change that by double-clicking on

the block. Figure A4.14 shows the model with the MUX in place.

Finally, let’s insert some blocks that allow us to monitor the simulation results.

In this case, we’ll use two different scope blocks. One will allow us to monitor both

integrator outputs on the same scope (again using a MUX block), the other will allow

us to plot one state against the other. The latter is called the XY Graph block and,

unlike the Scope block, it generates a standard MATLAB graph in a figure window.

Figure A4.15 shows the final configuration of the simulation model.

Appendix 4: Simulink Tutorial 473

Figure A4.13. Van Der Pol simulation, continuing.

Figure A4.14. MUX block installed.

474 Appendix 4: Simulink Tutorial

Figure A4.15. The model structure complete.

Figure A4.15 shows the structure of the model, but the actual equation has not yet

been implemented. For that we turn to the MATLAB m-file editor (see Appendix 3)

and write a function that has the following characteristics:

� It takes as an argument a vector containing the current values of y and dy/dt,
� the argument is a vector of two elements,
� it returns the value of the highest derivative,
� it is stored in the same subdirectory as the Simulink file.

One possible implementation of the function is shown in the subsequent program

listing:

function y2d = vdpfun(y)

%

% y(1) = y

% y(2) = dy/dt

%

mu=3;

%

y2d = mu*(1-y(1)ˆ2)*y(2)-y(1);

Note that the order in which the two state values are passed to the function are

not arbitrary. They appear in the input vector in the same order they appear on the

MUX block in the Simulink model (top to bottom).

Store this file as vdpfun.m and return to the Simulink model. Double-click on

the Fcn block and provide the name of the function you just defined and indicate

the dimension of the information being returned to Simulink. In this case, we are

Appendix 4: Simulink Tutorial 475

Figure A4.16. Dialog box for MATLAB Fcn.

returning a scalar, dimension 1. Figure A4.16 shows the dialog box appropriately

filled out.

One final step, and we’re ready to run the simulation. We want to set the initial

value of y to be 1.0 and the initial value of dy/dt as 0.0. As before, double-click on

the integrator blocks to accomplish this and run the simulation.

The scope block shows the two states during the first cycle of oscillation, as seen

in Fig. A4.17.

Figure A4.17. Scope output of the Van Der Pol simulation.

476 Appendix 4: Simulink Tutorial

Figure A4.18. Output of XY graph after the scale has been properly set.

The XY Graph, however (you may have to find the figure window; it won’t

necessarily pop to the top of your desktop), is probably not very illuminating because

most of the state trajectory is outside the plotting window set by the default settings of

the bock. Referring to Fig. A4.18, we can see that all of the activity of the oscillator

falls between −5 and 5. Go back to the Simulink model and double-click on the

XY Graph block to reset the scale, and then rerun the simulation. The XY Graph

produces a plot similar to that seen in Fig. A4.18.

Two features might be apparent from this graph. One is that it doesn’t seem

to have settled down to a steady oscillation (which would be indicated by the plot

retracing itself around the plane several times.) The second is more subtle. Note the

sharp “cusps” in the plot at the very top and the very bottom of the trajectory. This

occurs because the variable-time-step algorithm in Simulink has taken fairly large

steps at those points (while still maintaining specified accuracy) but the plotting

algorithm has simply drawn straight lines between the computed points. We can

improve the appearance of the plot by changing the accuracy requirements of the

Simulink solver.

From the Simulation menu, choose “Configuration Parameters.” In the dialog

box, change the “Relative Tolerance” to 1E-6. Also, change the “Stop Time” to 30.0

and rerun the simulation. Figure A4.19 shows the improved plot that addresses both

concerns.

A4.3 ADDITIONAL PLOTTING AND STORAGE OPTIONS

The Simulink “Sinks” library has several blocks that can be used to implement a

variety of visualizations. However, the maximum flexibility is achieved by storing the

results of the simulation as a MATLAB workspace variable (matrix) that can then

Appendix 4: Simulink Tutorial 477

Figure A4.19. Typical state trajectory of a Van Der Pol oscillator.

be saved as a file or manipulated like a MATLAB variable. The “To Workspace”

block in the “Sinks” library accomplishes this.

Keeping with the Van Der Pol simulation, drag a “To Workspace” block to

the simulation window, and connect it to the simulation by tapping the signal that

connects to the scope block. This is shown in Fig. A4.20.

Figure A4.20. Simulation with To Workspace block connected.

478 Appendix 4: Simulink Tutorial

Figure A4.21. Dialog box for the To Workspace block.

Before we rerun the simulation, double-click on the new block and examine the

settings, as shown in Fig. A4.21.

The five fields are described briefly:

Variable name: This is self-explanatory, the name of the MATLAB workspace

variable that is created on completion of the simulation. The default issimout.

Limit data points to last: For very large simulations spanning long time periods,

the amount of data that is stored may be problematic, depending on the amount

of RAM in your computer. Therefore there is a capability to limit the storage

to the last n data points. By default, the block stores all computed points.

Decimation: Related to the problem of storage, you have the option of storing

every nth data point instead of every point computed, which is the default.

Sample time: By default, the workspace variable will receive data at the points

in time when Simulink computes them. Because most Simulink algorithms are

variable-step-time algorithms, the time increments are rather varied for most

simulations. If a constant time increment between output data is desired, that

can be accomplished here.

Save format: In Release 12 and later versions of MATLAB/Simulink, several

new data structures (more complicated than matrices) were introduced. By

default, one of these data structures is used to store the simulation results

to the workspace. The drop-down menu allows two additional choices, the

simplest of which is “Array.” If you are following along with the tutorial, select

“Array” now.

Appendix 4: Simulink Tutorial 479

Figure A4.22. Plot of simulation output from workspace variable.

Run the simulation and click over to the MATLAB window. Inspect the

“Workspace” subwindow in MATLAB (see discussion in Appendix 3). You should

see two new variables in the workspace, tout and simout. The first variable,

tout, is a one-dimensional vector containing the values of time at the points where

the outputs are computed. The second, simout, contains the values of dy/dt (in the

first column of the variable) and y (in the second column). Note that the order in

which they are stored in simout is the same as the order in which they are connected

to the MUX block in the simulation window.

As a final illustration, use the MATLAB plot command to plot the derivative

of the output against time, but using a small circle to indicate each computation as a

separate point without connecting lines,

>>plot(tout,simout(:,1),‘o’)

the results of which are seen in Fig. A4.22.

A4.4 CONCLUSION

In this tutorial, we’ve attempted to give you enough of an orientation to implement

moderately complicated models in Simulink. Like any comprehensive engineering

tool, the full potential is achieved through a combination of use, repetition, and

exploration. The help facility that accompanies Simulink, like the one for MATLAB,

is extensive and educational. The interested reader is well advised to explore.

Index

A-type elements, 4–7, 18, 31, 168, 198, 202, 219,

220, 222, 225

A-type variables. See Across variable

ac current, 172, 251

ac induction motor, 251

Acceleration

rotational, 30

translational, 16

Accumulator, 219

Across variable, 4–7, 31, 65, 170, 198, 213, 220,

222, 250, 254

Aliasing, 399

Amplifier

operational, 179–186

pneumatic, 239–243

Amplitude

complex, 303

Real, 303

Analytical solution, 81–111

Angle, shaft, 30

Antialiasing filter, 399

Asymptotic Bode diagrams, 309–311

Asymptotic frequency characteristics, 309–311

Asymptotic stability, 332

Automobile

motion, 17–18

steering, 330

suspension system, 48

Backward-difference approximation, 391, 422

Bandwidth, 310

Bilinear transformation, 417

Biot number, 203

Block diagrams

simulation, 143–147, 463

system, 2

transfer function, 286–293

Bode diagrams, 307–314

asymptotic, 309–311

Break frequency, 310

Capacitance

electrical, 170–171, 310

fluid, 219–222

pneumatic, 236

thermal, 202

Capacitor, 4, 168, 170

time-varying, 186

Capillary resistor, 223

Centrifugal pump, 253

Characteristic equation and roots, 83, 84, 93–98,

106–109

Charge. See Electrical capacitor

Classical solutions. See Analytical solution

Closed-loop control system, 356–357

Coefficient block, 143

Compatibility law, 23, 225

Compensation, 378–382

feedback, 379–382

feedforward, 379

series, 379–382

Compensator

lag, 380–382

lag–lead, 381–382

lead, 380–382

Complex number, 93

Complex plane, 274

Complex roots, 93–98

Complex variable

Conduction, 199–200

Continuity law, 225

Control laws

on-off control, 366–367

proportional (P) control, 367

proportional–derivative (PD) control, 368

proportional–integral (PI) control, 367

proportional–integral–derivative (PID) control,

273, 368, 421

Controllers

analog, 365–382

digital, 421–423

Convection, 200–201

Convective heat transfer coefficient, 200

Corner frequency, 170–171, 310

Coulomb friction, 131, 154

Coupling coefficient, 249, 253

Critical damping, 96, 100

Current source, 169

D-type elements, 4, 7, 22, 33, 168, 173, 198, 219,

223

Damped natural frequency, 96, 415

481

482 Index

Damper, 4

rotational, 32, 39

translational, 22

Damping ratio, 94–104, 415

dc motor, 251, 257

Decay ratio, 103

logarithmic, 104

Decibel, 307

Delay time, 103, 369

Density

mass, 222

weight, 236

Differential equations

linear, 54–71

nonlinear, 34–44, 71–76

solutions, analytical, 81–111

solutions, numerical, 120–138

Digital control system, 410–424

Digital signal, 390

Digital simulation. See Simulation

Dirac’s delta function, 87, 398

Direct-transmission matrix, 65

Discrete-time system, 389–407

Discretized model of continuous system, 389–407

Distributed digital control system, 411

Disturbance, 361–364

pulse transfer function, 420

steady-state sensitivity, 361–364

transfer function, 362

Divider, 144

Dominant roots, 106–109

Electric-field energy, 168, 171

Electrical capacitor. See Capacitor

Electrical circuits, 168–189

Electrical compensator. See Compensator

Electrical inductor. See Inductor

Electrical resistor. See Resistor

Electrical systems, 168–189

Energy

converters, 249–254

electromechanical, 250, 257

fluid mechanical, 252

dissipation, 4, 7

elements, 7

electric field, 168, 171

kinetic, 6, 18

magnetic field, 4, 168, 172

potential, 4, 19

storage, 4–7

Equation(s)

characteristic, 82–84, 93, 106

differential, 54–76, 81–111

input–output, 55–60, 68–71

Laplace transformed, 276–277, 437

state variable, 61–71

s-transformed, 273–276

Error

in numerical integration, 123–132

steady-state, 357–361, 418–421

Error pulse transfer function, 418

Error transfer function, 358

Euler’s equation, 274, 428

Euler’s method, 121–123

improved, 125–126

Expansion

partial fraction, 403, 437

Taylor series, 34–44

Exponential input function, 274–276

Feedback

compensation, 378–382

intentional or manmade, 329–331

natural, 7, 146, 273

negative, 329–331

path, 146

Feedforward compensation. See Compensation

Field

electric. See Electric field

magnetic. See Magnetic filed

Filter

antialiasing, 399

Low-pass, 310

Final-value theorem, 358–364, 433

First law of thermodynamics, 202

First-order models, 84–92

Flow rate

charge (electric), 168–169

heat, 198–201

mass, 235

volume, 220–228

weight, 235

Fluid

capacitance, 219–222

capacitor, 220–222

coupling, 33, 39, 236–237

inertance, 4, 222, 237

inertor, 222, 237

pump, 253

resistance, 4, 223, 237–238

resistor, 223, 237–238

sources, 224

Flux linkage, 171, 187

Force, 16

Forcing function

impulse, 87

ramp, 360

sinusoidal

step, 85, 359

Fourier series, 307, 427–431

Fourier transform, 427–431

Free-body diagram, 19

Free response, 82, 84, 93

Frequency analysis, 302–323

Frequency response, 302–323

Frequency, natural. See Natural frequency

Friction

Coulomb, 131, 154

nonlinear, 39, 131, 153

viscous, 22, 32

Index 483

Gain, 341, 467

Gain margin, 341

Gating function, 398

Gear

ratio, 115

train, 115

Guard filter. See Antialiasing filter

Huen’s method, 125

Higher-order models, 106–109

Holding device, 396–400

Homogeneous solution, 82, 84, 93, 100, 109

Hooke’s law, 19

Hurwitz determinants, 335

Hurwitz stability criterion, 334

Hydraulic orifice, 224, 227, 230

Hydraulic pump, 253

Hydraulic resistance. See Resistance

Hydraulic turbine, 253

Impulse function, 87

Impulse response, 90, 94

Incremental resistance, 175

Incremental spring constant, 20, 39

Incremental variables, 37–44

Inductance, 4, 168

Inductor, 168, 171–172

time-varying, 187

Inertance. See Fluid inertance

Inertia

rotational, 30

translational. See Mass

Initial conditions, 82, 142, 144, 148, 276,

437

at t = 0−, 437

at t = 0+, 82

Initial-value theorem, 433

input, 1, 55

exponential, 274–276

matrix, 65

simulation, 142

variables, 1, 55

Input–output models

of continuous models, 55–60, 71–76

of discrete-time systems, 390–394

Instability

numerical computation, 133–138

system. See Stability

Integration

numerical, 120–138

role of, 4, 18

step-size, 129–132

Integrator, 144, 186

Inverse Laplace transform, 432

Inverse z transform, 402

Kinetic energy, 6, 18

Kirchhoff’s current law, 170

Kirchhoff’s voltage law, 170

Lag. See Time lag

Laminar flow, 224

Laplace transform, 276–277, 437

basic properties, 433

definition, 432

equation, 199

inverse, 432

table of basic transforms, 435

Linearization, 34–44

error, 43

Logarithmic decay ratio, 104

Loop method, 177

Loop variables, 177

Low-pass filter, 310

Lumped-parameter models. See Model

Lyapunov’s definition of stability, 332

Magnetic-field energy. See Energy

Mapping between the s and z planes,

412–418

Marginal stability, 94, 339

Mass, 16–19

Mathematical model. See Model

Matrix

direct transmission, 65

input, 65

output, 65

state, 65

Maximum overshoot, 103

Mechanical systems, 14–45

rotational, 16–30

translational, 30–34

Mixed systems, 249–261

Model, 2

continuous, 4, 54–76

discrete, 4, 390

discretized, 4, 390

distributed, 4

Input–output, 55–60, 71–76

of discrete-time systems, 390–396

Linear, 4, 54–76

Linearized, 34–44

Lumped, 4

Nonlinear, 4, 71–76

Second-order, 92–105

State

of continuous systems, 61–68

of discrete-time systems, 394–396

Stationary, 251–252

time-varying, 4

Motion

rotational, 30–34

translational, 16–30

Motor

ac induction, 251

dc, 251, 257

electrical, 251–252, 257

hydraulic, 252, 259

Multi-input, multi-output system, 60

Multiplier, 144

484 Index

Natural frequency, 60, 94–100, 311

Newton’s laws, 16

Node method, 176

Node variables, 176

Nonlinear system. See Model

Normal operating point, 37

Numerical integration, 120–138

Nyquist frequency, 398

Nyquist stability criterion, 338–341

Octave, 311

On–off control. See Two-position control

Open-loop control system, 356

Operational amplifier, 179–186

Ordinary differential equations, 54–76

analytical solution, 81–111

numerical solution, 120–138

Orifice

hydraulic, 224, 227, 230

pneumatic, 237

Oscillations, 94, 101, 370

Output

matrix, 65

variables, 2, 55, 142

Overdamped system, 101

Overshoot, 103

Partial differential equations, 4, 15, 199

Partial fraction expansion method, 403, 437

Particular integral, 82

Passive systems, 329

Peak time, 102

Period of oscillations, 101

Periodic functions, 307, 427

Phase, 303, 307

Phase margin, 342

Pneumatic amplifier, 239–243

Pneumatic capacitance, 236

Pneumatic inertance, 237

Pneumatic orifice, 237

Pneumatic resistance, 237–238

Pneumatic systems, 235

Polar plots, 317–319

Poles, 344–347, 412–418

Porous plug resistor, 237

Power, 249–254

Pressure

absolute, 220

gauge, 220

reference, 220

Proportional (P) control, 367

Proportional–derivative (PD) control, 368

Proportional–integral (PI) control, 367

Proportional–integral–derivative (PID) control,

273, 368, 421

position form, 422

velocity form, 422

Pulse function, 89

Pulse transfer function, 405–407

Pump

centrifugal, 253

hydraulic, 253

Quantization, 390

Rack and pinion, 115

Radiation thermal, 201

Ramp input, 360, 419

Reference

frame of, 16

nonaccelerating, 16

pressure, 220

velocity, 16

voltage, 169

Resistance

electrical, 169, 173

hydraulic, 220, 223

incremental, 175

pneumatic, 237–238

thermal, 202

conductive, 203

convective, 203

radiative, 203

Resistor

capillary, 223

electrical, 169, 173, 186

fluid, 223, 237–238

nonlinear, 174

time-varying, 186

Rise time, 103

Root-locus method, 344–347

Rotational system, 16–30

Round-off error. See Error, numerical integration

Routh stability criterion, 336–337

Runge–Kutta method, 126–129

s domain, 274–276, 413

s plane, 274–276, 413

mapping to z plane, 413

Sampling device, 396–400

Sampling frequency. See Sampling time

Sampling time, 392, 398

Second-order models, 92–105

Self-tuning, 370

Sensitivity to disturbances, 361–364, 420

Series compensation, 379–382

Sevoactuator, electrohydraulic, 228–235

Settling time, 103

Shannon’s theorem, 398

Signal

digital, 390

periodical, 427

sampled-data, 390

sinusoidal, 275

Simplification (dominant roots), 106–109

Simulation, 141–164

Simulation block diagrams, 143–147, 463

Single-input–single-output system, 55

Index 485

Sinusoidal excitation, 275

Small-perturbation analysis, 37–44, 203, 240

Source

current, 169

flow, 224

pressure, 224

voltage, 169

Specific heat, 199, 202

Spring

constant, 4

real, 14

rotational, 31

stiffness, 19

translational, 19–22

Stability

asymptotic, 332

of discrete-time systems, 415

gain margin, 341

Hurwitz criterion, 334

Lyapunov’s definition, 332

marginal, 94, 339

necessary condition for, 334

numerical computation, 133–138

Nyquist criterion, 338–341

phase margin, 342

Routh criterion, 336–337

State, 61, 62

matrix, 65

model equations, 63, 71–76

model of discrete-time systems, 394–396

output equations, 64

space, 61, 62

trajectory, 62

variables, 61

auxiliary, 69

selection, 65

vector, 61, 62

Static position error coefficient, 359, 419

Static velocity error coefficient, 360, 420

Stationary system, 251–252

Steady sinusoidal excitation, 302–323

Steady–state control error, 357–361, 418–421

in response to ramp input, 360–361, 419–421

in response to step input, 359–360, 419

Steady-state disturbance sensitivity, 361–364,

420

Stefan–Boltzmann law, 201

Step function, 85

Step response, 86, 98

Stiff system, 133–138

Superposition, 89

System

continuous, 4, 54–76

discrete-time, 4

dynamic, 1–4

electrical, 168–189

fluid, 219–244

linear, 4

lumped-parameter, 4

mass–spring–damper, 25–26, 104–105, 145

mechanical, 14–45

mixed, 249–261

model, 1–4, 54–76

nonlinear, 4

pneumatic, 235

spring–damper, 23

stable, 329–352

stationary, 251–252

thermal, 198–213

type, 4, 359–361, 419–420

Table of Laplace and z transforms, 435

Taylor series, 34–44

Thermal capacitance, 203

Thermal conductivity, 199

Thermal resistance, 198, 202–204

Thermal systems, 198–213

Third-order models, 106–109

Through variable, 4–7, 22, 32, 65, 170, 172, 213,

222, 254

Time constant, 85

Time delay, 103, 156, 369

Time step size, 129–132, 142, 150, 390

See also Sampling time

Torque, 30–34

Transducer

electromechanical, 250, 257

energy converting, 249–254

fluid mechanical, 252

mechanical translation to mechanical rotation,

249

signal converting, 254

Transfer function, 273–299

block diagrams, 286–293

closed-loop, 289, 334

frequency-response, 302–307

Transformer, 172

Transient response, 84–111, 364–365, 412–418

Translational systems, 16–30

Truncation error. See Error, numerical

integration

T-type element, 4–7, 22, 32, 168, 219, 222

T-type variable. See Through variable

Tuning rules of Ziegler and Nichols, 368–370

Turbine, 253

Turbulent flow, 224

Two-position control, 366–367

Type of system, 4, 359–361, 419–420

Underdamped system, 99–100

Unit impulse function. See Impulse function

Unit impulse response. See Impulse response

Unit step function. See Step function

Unit step response. See Step response

Unstable system. See Stability

Valve, 228

Variable-displacement hydraulic motor, 259

486 Index

Velocity

rotational, 30

translational, 16–19

Vibration absorber, 28

Viscous friction, 22, 32

Voltage source, 169

Volume chamber, 221

Weighting sequence, 406

Wind-up of a control error, 422

z domain, 400–407

z transform, 400–407

inverse, 402

one-sided, 400

table of basic transforms, 435

theorems, 402

Zero-order hold (ZOH), 396–400

Zeros, 347

Ziegler–Nichols tuning rules,

368–370

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	DYNAMIC MODELING AND CONTROL OF ENGINEERING SYSTEMS
	1 Introduction
	1.1 SYSTEMS AND SYSTEM MODELS
	1.2 SYSTEM ELEMENTS, THEIR CHARACTERISTICS, AND THE ROLE OF INTEGRATION

	2 Mechanical Systems
	2.1 INTRODUCTION
	2.2 TRANSLATIONAL MECHANICAL SYSTEMS
	2.2.1 Translational Masses
	2.2.2 Translational Springs
	2.2.3 Translational Dampers
	2.2.4 Elementary Systems – Combinations of Translational Elements

	2.3 ROTATIONAL–MECHANICAL SYSTEMS
	2.3.1 Rotational Inertias
	2.3.2 Rotational Springs
	2.3.3 Rotational Dampers

	2.4 LINEARIZATION
	2.5 SYNOPSIS

	3 Mathematical Models
	3.1 INTRODUCTION
	3.2 INPUT–OUTPUT MODELS
	3.3 STATE MODELS
	3.4 TRANSITION BETWEEN INPUT–OUTPUT AND STATE MODELS
	3.5 NONLINEARITIES IN INPUT–OUTPUT AND STATE MODELS
	3.6 SYNOPSIS

	4 Analytical Solutions of System Input–Output Equations
	4.1 INTRODUCTION
	4.2 ANALYTICAL SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS
	4.3 FIRST-ORDER MODELS
	4.4 SECOND-ORDER MODELS
	4.4.1 Free Response
	4.4.2 Step Response

	4.5 THIRD- AND HIGHER-ORDER MODELS
	4.6 SYNOPSIS

	5 Numerical Solutions of Ordinary Differential Equations
	5.1 INTRODUCTION
	5.2 EULER’S METHOD
	5.3 MORE ACCURATE METHODS
	5.3.1 Improved Euler Method
	5.3.2 Runge–Kutta Method

	5.4 INTEGRATION STEP SIZE
	5.5 SYSTEMS OF DIFFERENTIAL EQUATIONS
	5.6 STIFF SYSTEMS OF DIFFERENTIAL EQUATIONS
	5.7 SYNOPSIS

	6 Simulation of Dynamic Systems
	6.1 INTRODUCTION
	6.2 SIMULATION BLOCK DIAGRAMS
	6.2.1 Coefficient Blocks
	6.2.2 Summation Blocks
	6.2.3 Integration and Differentiation Blocks
	6.2.4 Drawing Complete Diagrams from Describing Equations

	6.3 BUILDING A SIMULATION
	6.3.1 Structure of the Simulation: The Block Diagram
	6.3.2 Model Parameters
	6.3.3 Initial Conditions
	6.3.4 Inputs
	6.3.5 Outputs
	6.3.6 Simulation Solution Control

	6.4 STUDYING A SYSTEM WITH A SIMULATION
	6.4.1 Monitoring Indices of Performance
	6.4.2 Parametric Studies: Engineering Design
	6.4.3 Nonlinear Systems

	6.5 SIMULATION CASE STUDY: MECHANICAL SNUBBER
	6.5.1 Modeling the System
	6.5.2 Block-Diagram Approach to Simulation Structure
	6.5.3 Alternative Approach to Configuration Dependence
	6.5.4 Parametric Study – Running Simulation from a Script

	6.6 SYNOPSIS

	7 Electrical Systems
	7.1 INTRODUCTION
	7.2 DIAGRAMS, SYMBOLS, AND CIRCUIT LAWS
	7.3 ELEMENTAL DIAGRAMS, EQUATIONS, AND ENERGY STORAGE
	7.3.1 Capacitors
	7.3.2 Inductors
	7.3.3 Transformers
	7.3.4 Resistors

	7.4 ANALYSIS OF SYSTEMS OF INTERACTING ELECTRICAL ELEMENTS
	7.5 OPERATIONAL AMPLIFIERS
	7.5.1 Inverting Amplifier
	7.5.2 Noninverting Amplifier
	7.5.3 Voltage Follower
	7.5.4 Summing Amplifier
	7.5.5 Differential Amplifier
	7.5.6 Active Filter

	7.6 LINEAR TIME-VARYING ELECTRICAL ELEMENTS
	7.7 SYNOPSIS

	8 Thermal Systems
	8.1 INTRODUCTION
	8.2 BASIC MECHANISMS OF HEAT TRANSFER
	8.2.1 Conduction
	8.2.2 Convection
	8.2.3 Radiation

	8.3 LUMPED MODELS OF THERMAL SYSTEMS
	8.4 SYNOPSIS

	9 Fluid Systems
	9.1 INTRODUCTION
	9.2 FLUID SYSTEM ELEMENTS
	9.2.1 Fluid Capacitors
	9.2.2 Fluid Inertors
	9.2.3 Fluid Resistors
	9.2.4 Fluid Sources
	9.2.5 Interconnection Laws

	9.3 ANALYSIS OF FLUID SYSTEMS
	9.4 ELECTROHYDRAULIC SERVOACTUATOR
	9.5 PNEUMATIC SYSTEMS
	9.6 SYNOPSIS

	10 Mixed Systems
	10.1 INTRODUCTION
	10.2 ENERGY-CONVERTING TRANSDUCERS AND DEVICES
	10.2.1 Translational–Mechanical to Rotational–Mechanical Transducers
	10.2.2 Electromechanical Energy Converters
	10.2.3 Fluid Mechanical Energy Converters

	10.3 SIGNAL-CONVERTING TRANSDUCERS
	10.4 APPLICATION EXAMPLES
	10.5 SYNOPSIS

	11 System Transfer Functions
	11.1 INTRODUCTION
	11.2 APPROACH BASED ON SYSTEM RESPONSE TO EXPONENTIAL INPUTS
	11.3 APPROACH BASED ON LAPLACE TRANSFORMATION
	11.4 PROPERTIES OF SYSTEM TRANSFER FUNCTION
	11.5 TRANSFER FUNCTIONS OF MULTI-INPUT, MULTI-OUTPUT SYSTEMS
	11.6 TRANSFER FUNCTION BLOCK-DIAGRAM ALGEBRA
	11.7 MATLAB REPRESENTATION OF TRANSFER FUNCTION
	11.8 SYNOPSIS

	12 Frequency Analysis
	12.1 INTRODUCTION
	12.2 FREQUENCY-RESPONSE TRANSFER FUNCTIONS
	12.3 BODE DIAGRAMS
	12.4 RELATIONSHIP BETWEEN TIME RESPONSE AND FREQUENCY RESPONSE
	12.5 POLAR PLOT DIAGRAMS
	12.6 FREQUENCY-DOMAIN ANALYSIS WITH MATLAB
	12.6.1 Complex Numbers and MATLAB
	12.6.2 Frequency Response and Transfer Function Evaluation
	12.6.3 Bode and Nyquist Plots of Frequency Response

	12.7 SYNOPSIS

	13 Closed-Loop Systems and System Stability
	13.1 INTRODUCTION
	13.2 BASIC DEFINITIONS AND TERMINOLOGY
	13.3 ALGEBRAIC STABILITY CRITERIA
	13.3.1 Hurwitz Criterion
	13.3.2 Routh Criterion

	13.4 NYQUIST STABILITY CRITERION
	13.5 QUANTITATIVE MEASURES OF STABILITY
	13.6 ROOT-LOCUS METHOD
	13.7 MATLAB TOOLS FOR SYSTEM STABILITY ANALYSIS
	13.7.1 Phase and Gain Margin Determination
	13.7.2 Root-Locus Plots in MATLAB

	13.8 SYNOPSIS

	14 Control Systems
	14.1 INTRODUCTION
	14.2 STEADY-STATE CONTROL ERROR
	14.2.1 Unit Step Input, u(t) = Us(t)
	14.2.2 Unit Ramp Input, u(t) = t

	14.3 STEADY-STATE DISTURBANCE SENSITIVITY
	14.4 INTERRELATION OF STEADY-STATE AND TRANSIENT CONSIDERATIONS
	14.5 INDUSTRIAL CONTROLLERS
	14.5.1 Two-Position or On–Off Control
	14.5.2 Proportional Control
	14.5.3 Proportional–Integral Control
	14.5.4 Proportional–Derivative Control
	14.5.5 Proportional–Integral–Derivative Control

	14.6 SYSTEM COMPENSATION
	14.7 SYNOPSIS

	15 Analysis of Discrete-Time Systems
	15.1 INTRODUCTION
	15.2 MATHEMATICAL MODELING
	15.2.1 Input–Output Models
	15.2.2 State Models

	15.3 SAMPLING AND HOLDING DEVICES
	15.4 THE z TRANSFORM
	15.4.1 Definition and Basic z Transforms
	15.4.2 z-Transform Theorems
	15.4.3 Inverse z Transform

	15.5 PULSE TRANSFER FUNCTION
	15.6 SYNOPSIS

	16 Digital Control Systems
	16.1 INTRODUCTION
	16.2 SINGLE-LOOP CONTROL SYSTEMS
	16.3 TRANSIENT PERFORMANCE
	16.4 STEADY-STATE PERFORMANCE
	16.4.1 Unit Step Input
	16.4.2 Unit Ramp Input

	16.5 DIGITAL CONTROLLERS
	16.6 SYNOPSIS

	APPENDIX 1 Fourier Series and the Fourier Transform
	APPENDIX 2 Laplace Transforms
	A2.1 DEFINITION OF LAPLACE TRANSFORM
	A2.2 INVERSE LAPLACE TRANSFORM
	A2.3 BASIC PROPERTIES OF THE LAPLACE TRANSFORM
	A2.4 PARTIAL FRACTION EXPANSION METHOD

	APPENDIX 3 MATLAB Tutorial
	A3.1 MATLAB OVERVIEW
	A3.1.1 Launching MATLAB
	A3.1.2 The Command Window
	A3.1.3 The WORKSPACE Window

	A3.2 MULTIDEMENSIONAL MATRICES
	A3.2.1 Linear Algebra
	A3.2.2 Manipulating Matrices

	A3.3 PLOTTING IN MATLAB
	A3.4 PROGRAMMING IN MATLAB
	A3.5 SOLVING ORDINARY DIFFERENTIAL EQUATIONS IN MATLAB
	A3.5.1 Mathematical Overview

	A3.6 SYSTEM ANALYSIS IN MATLAB
	A3.6.1 Transfer Function (TF) Object
	A3.6.2 Zero-Pole-Gain (ZPK) Object
	A3.6.3 State-Space Object
	A3.6.4 Converting Between Model Formats
	A3.6.5 Analysis and Manipulation of LTI Models in MATLAB

	A3.7 GOING FURTHER: STORING DATA AND GETTING HELP
	A3.7.1 The HELP Functions

	APPENDIX 4 Simulink Tutorial
	A4.1 OVERVIEW OF SIMULINK
	A4.2 LAUNCHING THE SIMULINK LIBRARY BROWSER
	A4.2.1 Starting a New Model

	A4.3 ADDITIONAL PLOTTING AND STORAGE OPTIONS
	A4.4 CONCLUSION

	Index

